THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос (динамический хаос , детерминированный хаос ). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной . Для акцентирования особого характера изучаемого в рамках этой теории явления, обычно принято использовать название: теория динамического хаоса .

Примерами подобных систем являются атмосфера , турбулентные потоки , некоторые виды аритмий сердца, биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием .

Теория хаоса - область исследований, связывающая математику и физику.

Энциклопедичный YouTube

    1 / 5

    ✪ Тайна теории хаоса раскрыта!

    ✪ 15x4 - 15 минут о теории хаоса

    ✪ Илья Щуров. Бифуркации, катастрофы и хаос

    ✪ Veritasium #1 Что НЕ является Случайностью?

    ✪ Теория струн для чайников

    Субтитры

    всем привет меня зовут артур шарифов и вы смотрите мое новое видео на канале кверти как я сюда попал буквально откуда я пришел слева может быть справа может я вообще сидел на корточках и просто привстал вы затрудняетесь ответить ведь то что вы видите это лишь результат это конечная точка а конечная точка чего можно вообразить себе много разных вариантов развития событий при которых я оказался бы там где я оказался теория хаоса пытается дать ответы на подобного рода вопросы но она немного уходит в сторону хитрит куда проще и как оказалось куда полезней дать ответ на вопрос а что могло бы помешать мне здесь оказался все что угодно любое даже самое незначительное изменение в прошлом неминуемо привело бы к тому что я бы здесь не оказался это явление называется эффект бабочки это одно из ключевых свойств хаотичных систем теория хаоса на самом деле занимается изучением неистинного хауса неполного беспорядков хаотичная система в данном контексте тоже упорядочена причинно- следственная связь присутствует только вот управлять такой системой становится практически невозможно давайте рассмотрим вот такой пример расстояние от деревни горшки до парижа который в челябинской области 100 километров я выезжаю из горшков в париж и еду со скоростью 50 километров час через сколько часов я доеду до парижа решаем задачку если я за один час проезжаю 50 километров то за два часа я как раз проезду 100 километров да для того чтобы добраться от горшков до парижа мне нужно два часа действительно ли все так просто да на самом деле все потому что мы знаем что если я буду двигаться и чуть чуть быстрей то и приеду я чуть чуть раньше а если я буду двигаться немножко медленней то чутка позже и приеду в точку назначения это яркий пример устойчивой системы система описанная по математическим законам может считаться устойчивой если при малых изменениях начальных условий мы наблюдаем малые изменения результата двигался чуть чуть быстрее приехал чуть чуть раньше чем сложнее система тем она как правило неустойчивее но когда речь идет о сложных системах уже по самому названию можно понять что не все здесь так просто в английском языке есть слово complex и слово complicated b они оба переводятся на русский язык как сложный но при этом их значения немного разнятся и по иронии именно эти маленькие различия имеют очень большое значение комплекс это сложный в смысле навороченный продвинутый возможно состоящий из нескольких других объектов которые тоже можно считать навороченными например айфон достаточно сложная навороченная штука которая внутри состоит из большого количества компьютеров сложная но тем не менее устойчивая мы ведь очень легко управляемся с айфонами при этом при малых изменения параметров мы наблюдаем малое изменение результата такие сложные на самом деле ведь сложные системы являются устойчивыми к начальным условиям а вот те сложные системы которые по-английски называются complecated как раз и являются неустойчивыми они и есть объекты изучения теории хаоса в таких системах при малых изменениях начальных условий происходит просто колоссальное изменение результата самый лучший синоним который я смог подобрать в русском языке это слово запутанный создателем теории хаоса является эдвард лоренц нет это не тот лоренц который открыл силу лоренца и преобразование лоренца наш лоренц в первую очередь был метеоролог просто видимо у метеорологов очень скучная работа и лоенц видать от скуки начал просто по несколько раз перепроверять результаты он получал лист с распечаткой всей информации по исследованию а затем брал начальные условия и снова забивал их в компьютер парадокс в том что каждый раз после такого вот повторного прогона компьютер выдавал результаты которые значительно отличались от основного исследования причем чем долгосрочнее прогноз тем сильнее были различия лоренц конечно не хотел делать вывод о неправильности метеорологии как области знаний и естесственно начал искать причину таких глобальных несостыковок и этим самым он навсегда изменил математику дело в том что данные в компьютер вбивались с точностью до шести знаков после запятой а на распечатке данные округлялись до трех знаков после запятой то есть когда лоренц вбивал данные повторно с листочка он вбивал не изначальные данные а данные которые были уже округлены и хотя это очень маленькие различия то есть максимальная ошибка ведь составляет одну тысячную это очень незначительно и этого было достаточно для того чтобы вместо яркой и солнечной погоды начался ураган с градом лоренц стал все глубже опускаться в математику и таким образом открыл новую науку которая называется теория хаоса кстати термин эффект бабочки тоже был введен лоренцом график показывающий изменение множества состоянии нелинейной динамической системы с течением времени в трехмерном случае подозрительно напоминает крылья бабочки но как он сам признаётся такое название ему предложили организаторы его конференции лоренц для большей ироничности привел вот такой пример взмах крыльев бабочки в бразилии может породить целую цепочку событий которые проведут за собой смерч в техасе эффект бабочки является центральным понятием теории хаоса при этом очень важно не путать хаос и случайность многие явления в биологии химии, медицине и даже экономике которые раньше было сложно писать математические законами которые тогда условно считались случайными сейчас оказались хаотичными и работать с ними можно по законам теории хаоса к примеру стало намного проще предсказывать приступы эпилепсии у больных движение спутников по орбите оказались хаотичными транспортный поток по многополосной трассе также подвержен эффекту бабочки особенно сильное влияние теория хаоса оказала на демографические и экологические исследования ну и конечно у синоптиков теперь есть отговорка почему это не обещали нам теплую и ясную погоду а на улице холодно идет дождь бабочка где-нибудь в бразилии махнула крыльями мы ничего не могли поделать конечно же исследования лоренца были революционными и оказали огромное влияние на массовую культуру в трилогии фильмов назад в будущее можно заметить как изменяя что то в прошлом марти макфлай наблюдает колоссальные изменения в настоящем это и есть эффект бабочки лично у меня словосочетание эффект бабочки в первую очередь ассоциируется с эштоном катчером хотя бы потому что мое первое знакомство с этим явлением произошло именно благодаря одноименному фильму где в главной роли был эштон наш мир что уж там скрывать сложная конструкция сразу во всех смыслах очень навороченная и очень запутанная штука в своем прошлом видео я рассказал о таком абстрактном компьютере который вполне возможно мог бы предсказывать будущее на сотни или даже тысячи лет вперед так вот эффект бабочки который несомненно присутствует в нашем запутанном и хаотичном мире делает такое предсказание практически невозможным никаких округлений никаких приближений никаких допущений это запрещено а одна маленькая незначительная упущенная деталь будет стоить нам больших последствий в наших естественно неудачных попытках предсказать будущее причем чем дальше тем сильнее будут неточности чем дальше тем безнадежнее выглядит вся эта задумка если вам понравилось это видео обязательно поставьте ему большой палец вверх кстати говоря я пришел оттуда а теория хаоса все еще берет верх над нами так и не давая нам понять как же это вышло и что будет дальше на этом все если это видео соберет большое количество пальцев вверх то мы с вами увидимся уже на следующем видеоролике всем пока

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в некотором смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Отдельная область физики - теория квантового хаоса - изучает недетерминированные системы, подчиняющиеся законам квантовой механики .

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории . Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки ». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне . Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание» как пример хаотической системы соответствует смешиванию разноцветных красок или жидкостей.

Тонкости определения

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему , которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности , и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π . Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным . Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности , это похоже на отображения картины полного конечного аттрактора.

Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая . График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов .

Странные аттракторы

Странные аттракторы появляются в обеих системах , и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например, отображение Эно (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы, и системы Жулиа имеют типичную рекурсивную, фрактальную структуру.

Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений . Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел , испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением .

Простые хаотические системы

Хаотическими могут быть и простые системы без дифференциальных уравнений . Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений . Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Простую модель консервативного (обратимого) хаотического поведения демонстрирует так называемое отображение «кот Арнольда». В математике отображение «кот Арнольда» является моделью тора , которую он продемонстрировал в 1960 году с использованием образа кошки.

Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений . Теорема Пуанкаре - Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Zhang и Heidel доказали, что трехмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям, и поэтому представляют собой стабильные решения.

Хронология

Первым исследователем хаоса был Анри Пуанкаре . В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты , которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова .

Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф , A. Колмогоров , M. Каретник, Дж. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, турбулентность и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Дж. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбулентностью течения жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы.

Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года.

Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников . Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов .

В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию .

Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология , физика, биология, метеорология, астрофизика, теория информации, и т. д.).

Эволюции для предсказаний приступов, учитывая первоначальное состояние организма.

Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой . Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Различия между случайными и хаотическими данными

Только по исходным данным трудно сказать, каким является наблюдаемый процесс - случайным или хаотическим, потому что практически не существует явного чистого "сигнала" отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей.

Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:

  1. Выбрать тестируемое состояние.
  2. Найти несколько подобных или почти подобных состояний.
  3. Сравнить их развитие во времени.

Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.

По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции , экспоненты Ляпунова, и т. д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится - метод будет работать.

Когда в нелинейную детерминированную систему вмешиваются внешние помехи, её траектория постоянно искажается. Более того, действия помех усиливаются из-за нелинейности и система показывает полностью новые динамические свойства. Статистические испытания, пытающиеся отделить помехи от детерминированной основы или изолировать их, потерпели неудачу. При наличии взаимодействия между нелинейными детерминированными компонентами и помехами, в результате появляется динамика, которую традиционные испытания на нелинейность иногда не способны фиксировать.

Вам может показаться, что теория Хаоса весьма далека от фондового рынка и трейдинга в в частности. И действительно, каким боком один из разделов математики, в котором рассматриваются сложные динамические системы нелинейного характера, может относиться к миру трейденга? А вот и может!

Особенность нелинейных систем заключается в том, что их поведение находится в прямой зависимости от начальных условий. Но даже конкретные модели не позволяют предугадать их дальнейшего поведения.

На планете существует множество примеров подобных систем - турбулентность, атмосфера, биологические популяции и прочее.

Но, несмотря на свою непредсказуемость, динамические системы строго подчиняются одному закону и при желании могут быть смоделированы. К примеру, на фондовом рынке трейдеры и инвесторы также сталкиваются с кривыми, которые поддаются анализу.

Немного истории

Теория Хаоса нашла свое применение еще в 19 веке, но это были лишь первые шаги. Более серьезно изучением данной теории занялись Эдвард Лоренс и Бенуа Мандельброт, но произошло это уже позже – во второй половине 20-го века. При этом Лоуренс в своей теории пытался спрогнозировать погоду. И ему удалось вывести основную причину ее хаотичного поведения – различные начальные условия.

Основные инструменты

К основным инструментам теории Хаоса можно отнести фракталы и аттракторы. В чем суть каждого из них? Аттрактор – это то, к чему притягивается система, куда пытается прийти в конечном итоге. Его величина чаще всего является статистической мерой хаоса в целом. В свою очередь фрактал представляет собой некую геометрическую фигуру, часть которой постоянно повторяется. К слову, именно исходя из этого, было выведено одно из основных свойств данного инструмента – самоподобие. Но есть и еще одно свойство – дробность, которое становится математическим отображением меры неправильности фрактала.

По своей сути этот инструмент представляет собой противоположность хаоса.

К сожалению, точной математической системы теории Хаоса для изучения рыночных цен не существует. Следовательно, применять теорию Хаоса на практике не стоит торопиться. С другой стороны данное направление является одним из наиболее популярных и достойно внимания.

Хаотичность рынков

Как показывает практика, большинство современных рынков подвержено определенным тенденциям. Что это значит? Если рассматривать кривую на большом временном промежутке, то всегда можно увидеть причину того или иного движения. Но не все так гладко. На рынке всегда присутствует некий элемент непредсказуемости, который может внести какая-либо катастрофа, политические события или же действия инсайдеров. При этом современная теория Хаоса пытается спрогнозировать изменения на рынке с учетом каких-то нейросетевых подходов.

Возможность моделирования систем

Опытные участники прекрасно знают, что функционирует на основании какой-то сложной системы. Это не удивительно, ведь в нем присутствует множество участников (инвесторы, продавцы, спекулянты, покупатели, арбитражеры, хеджеры и так далее), каждый из которых выполняет какие-то свои задачи. При этом некоторые модели описывают данную систему, к примеру, волны Эллиота .

Отличие распределения Мандельбротта от нормального распределения

На практике распределение цены имеет гораздо больший разброс, чем ожидает большинство участников рынка. Мандельброт считал, что колебания цены имеет бесконечную дисперсию. Именно поэтому любые методы анализа являются неэффективными. Им было предложено проводить анализ распределения цены исключительно на основе фрактального анализа , который показал себя с лучшей стороны.

Выводы

Билл Вильяс (автор книги «Торговый хаос») уверен, что характеризующими звеньями хаоса являются системность и случайность. По его мнению, хаос является постоянным, в сравнению с той же стабильностью, которая временна. В свою очередь – это порождение хаоса. По сути, теория Хаоса ставит под сомнение саму основу технического анализа.

По мнению Вильямса, тот участник рынка, который в своем анализе отталкивается только от линейной перспективы, никогда не добьется больших результатов.

Более того, трейдеры проигрывают потому, что полагаются на различные виды анализа, которые зачастую абсолютно бесполезны.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Теория «управляемого хаоса» – это современный феномен, геополитическая доктрина, уходящая своими корнями в древнейшие науки, такие как философия, математика, физика. Понятие «хаос» возникло от названия в древнегреческой мифологии изначального состояния мира, некой «разверзшейся бездны», из которой возникли первые божества.

Попытки научного осмысления понятий «порядок» и «хаос» сформировали теории направленного беспорядка, обширные классификации и типологии хаоса. В древнейшей историко-философской традиции хаос понимался как все собой обнимающее и порождающее начало. В античном мировосприятии безвидный и непостижимый хаос наделен формообразующей силой и означал первичное бесформенное состояние материи и первопотенцию мира.

Современный уровень научных исследований обосновал теорию хаоса на утверждении того, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Стивен Манн – ключевая фигура в развитии геополитической доктрины «управление хаосом», в том числе и в рамках национальных интересов США. Стивен Манн (год рождения 1951) в 1973 г. закончил Оберлинский колледж (степень бакалавра по немецкому языку), в 1974 г. получил степень магистра по немецкой литературе в Корнуэльском университете (Нью-Йорк), с 1976 г. находился на дипломатической службе. Начинал карьеру в качестве сотрудника посольства США на Ямайке. Затем работал в Москве и в отделе по вопросам Советского Союза при Госдепартаменте в Вашингтоне, работал в Операционном Центре Госдепартамента (круглосуточно функционирующем кризисном центре), а также с 1991 по 1992 гг. – в офисе секретаря по обороне, охватывавшем вопросы России и Восточной Европы. В 1985-1986 гг. был стипендиатом Института Гарримана по исследованиям Советского Союза (Harriman Institute for Advanced Soviet Studies) при Колумбийском университете (здесь получил степень магистра по политологии). Был первым временным поверенным в делах США в Микронезии (1986-1988 гг.), Монголии (1988 г.) и Армении (1992 г.). В 1991 г. с отличием закончил Национальный военный колледж (National War College) в Вашингтоне. В 1992-1994 гг. был заместителем посла на Шри-Ланке. В 1995-1998 гг. работал директором отдела Индии, Непала и Шри-Ланки при Госдепартаменте США. С 1998 по май 2001 г. был послом США в Туркменистане. С мая 2001 г. Стивен Манн является специальным представителем президента США в странах Каспийского бассейна. Он – главный представитель американских энергетических интересов в этом регионе, лоббист проекта АБТД (нефтяной трубопровод Актау-Баку-Тбилиси-Джейхан).

По результатам обучения в Национальном военном колледже Стивен Манн в 1992 году подготовил статью, получившую большой резонанс в военно-политическом сообществе: «Теория хаоса и стратегическая мысль». Она была напечатана в главном профессиональном журнале армии США (Mann, Steven R. Chaos Theory and Strategic Thought // Parameters (US Army War College Quarterly), Vol. XXII, Autumn 1992, pp. 54-68).

В этой статье С. Манн излагает следующие тезисы: «Мы можем многому научиться, если рассматривать хаос и перегруппировку как возможности, а не рваться к стабильности как иллюзорной цели…». «Международная среда является превосходным примером хаотической системы... «самоорганизованная критичность» ... соответствует ей в качестве средства анализа... Мир обречен быть хаотичным, потому что многообразные акторы человеческой политики в динамической системе... имеют разные цели и ценности». «Каждый актор в политически критических системах производит энергию конфликта, ...которая провоцирует смену статус-кво, участвуя, таким образом, в создании критического состояния... и любой курс приводит состояние дел к неизбежному катаклизменному переустройству».

Основная мысль, вытекающая из представленных тезисов Манна, – перевести систему в состояние «политической критичности». А далее она – при определенных условиях – сама неизбежно ввергнет себя в катаклизмы хаоса и «переустройства». В контексте его статьи важно отметить, что рассматриваемый подход может использоваться как для социального созидания, так и для асоциального разрушения и геополитических манипуляций.

Совершенно ясно из доклада С. Манна прослеживается не только научно-идеологическая мысль, но и преследование национальной безопасности США. В указанной статье Манн пишет: «С американскими преимуществами в коммуникациях и увеличивающимися возможностями глобального перемещения, вирус (речь идет об «идеологическом заражении») будет самовоспроизводящимся и будет распространяться хаотическим путем. Поэтому наша национальная безопасность будет иметь наилучшие гарантии...». И далее: «Это единственный путь для построения долговременного мирового порядка. Если мы не сможем достичь такого идеологического изменения во всем мире, у нас останутся спорадические периоды спокойствия между катастрофическими переустройствами». Слова Манна о «мировом порядке» здесь – дань «политкорректности». Потому что в его докладе речь идет исключительно о хаосе, в котором, судя по словам Манна о «наилучших гарантиях национальной безопасности США», только у Америки будет возможность сохраниться в качестве «острова порядка» в океане «управляемой критичности» или глобального хаоса.

Говоря «хаос», мы, обычно, подразумеваем полное отсутствие порядка, абсолютную неупорядоченность и случайность. С математической точки зрения, хаос и порядок – понятия не взаимоисключающие. Теория хаоса (есть что-то завораживающие в названиях математических теорий) – достаточно молодая математическая область, создание которой приравнивают по значимости открытий ХХ века к созданию квантовой механики. Хаос случается в нелинейных динамических системах. Иначе говоря, любой процесс, который протекает со временем, может быть хаотичным (например, высота дерева, температура тела или популяция мадагаскарских тараканов).

Чтобы разобраться, что такое хаос, сначала обратимся к системам, такой чертой не наделённым. Детерминированные системы не допускают никаких случайностей: значение на выходе полностью определено значениями на входе. Таким образом, изменение начальных условий вызывает пропорциональное изменение результата. Так, ньютоновская механика подразумевает детерминированность, и изменяя, к примеру, силу пинка по мячу, можно ожидать соответствующее изменение в продолжительности полёта этого мяча. Так что, по принципу детерминированности, положение мяча в текущий момент полностью определено положением мяча в предыдущий момент и будущее положение зависит от текущего и всё это совсем несложно посчитать. Так, и астрономы прошлого времени полностью доверялись этому принципу и считали, что вселенная – строго детерминированная система и положение небесных тел в будущем (и в прошлом) можно рассчитать, зная их текущее положение и скорость, т.е. зная начальные условия. Предполагалось, что чем точнее известны начальные условия, тем точнее будет результат прогноза, однако известный математик Анри Пуанкаре, который (в свободное время, вероятно) занимался описанием орбит небесных тел, обнаружил, что в системах из 3-х и более тел, при незначительном изменение начальных условий (положения и скорости), траектории тела очень быстро удаляются друг от друга. Два близких набора начальных условий давали различные результаты.

Большой вклад в теорию хаоса внёс метеоролог Эдвард Лоренц. В шестидесятых годах прошлого века этот американец работал над компьютерной программой, моделирующей движение воздушных масс в атмосфере Земли. Все мы знаем, что компьютер (вопреки расхожим слухам) является строго детерминированной системой, и это создаёт известный принцип «garbage in garbage out». Лоренц гонял свою программу и в хвост, и в гриву, получая всякие разные результаты. Некоторые его коллеги даже делали предположения, что эта модель является точным предсказателем погоды, спрашивали, брать ли завтра зонтик. Разумеется, эти выводы были поспешны, вскоре выяснилась одна особенность модели погоды. Один раз для ускорения вычислений, Лоренц запустил программу не сначала, а ввёл в неё данные из предыдущего «прогона», которые были распечатаны на бумаге. Однако результаты такого запуска быстро начали отклоняться от уже полученных, формируя абсолютно другую картину. Немного неожиданно, не так ли? Оказалось, что Лоренц вводил не точные результаты прошлых вычислений, а округлённые перед выводом на печать, эта погрешность просто игнорировалась. Модель Лоренца оказалась сверхчувствительна к начальным условиям. Малейшее различие во входных данных приводило к сильному расхождению результатов с течением времени. Эта зависимость от начальных условий и была названа хаосом. Лоренцом была озвучена знаменитая черта хаоса, именуемая «эффектом бабочки», который предполагает, что в зависимости от того, махнёт ли бабочка крыльями в лесах Бразилии зависит случится ли в Техасе ураган или нет. Этот же принцип был положен в основу одноимённого фильма с Эштоном Катчером (кино ненаучное, смотреть необязательно).

Отклонение в результатах повторных вычислений

Вся эта зависимость от начальных условий предполагает, что мы не можем делать долгосрочные прогнозы в нестабильных динамических системах. Любая погрешность в начальных условиях не позволит нам предсказать результат на какой-либо продолжительный отрезок времени. Если, к примеру, взять модель Лоренца, в качестве входных данных для определения скорости ветра нам будет необходимо ввести значения температуры и давления в каждой точке земной атмосферы, только тогда можно будет ожидать достоверный прогноз на длительный срок. Причём, входные данные должны быть абсолютно точными, т. е. с бесконечным числом знаков после запятой. А как известно, совершенно все измерительные приборы на Земле имеют ненулевую погрешность. Как бы точно не была измерена величина, всегда можно (теоретически) измерить точнее. Да и нет таких машин, которые бы позволили вводить бесконечное количество знаков после запятой. Может с приходом квантовых компьютеров что-то и изменится, не знаю.

Вот и выходит, что никуда от хаоса не деться и надо с ним мириться. Но не всё так плохо, на мой взгляд. Если бы все процессы во вселенной были бы полностью детерминированными, без единого намёка на случайность, жить было бы намного скучнее. Некоторые учёные даже склоняются к мысли о том, что хаос придаёт вселенной «стрелу времени», направленное и необратимое движение из прошлого в будущее.

Однако «хаос» и «случайность» понятия совсем не равнозначные. Определённая интерпретация процессов, кажущихся случайными, приводит их в порядок. К примеру, время между биениями сердца человека величина непостоянная, даже если человек не подвержен физ нагрузке. Если мы понаблюдаем за биением сердца некоторое время и интервалы между биениями запишем в таблицу, а также создадим второй столбец, копируя значения из первого, но со сдвигом на одно значение (т.е. первому измерению (t) в первом столбце будет соответствовать второе измерение (t+1) во втором, второму - третье и т.д;), можно будет построить карту, где по вертикали будем иметь значения без сдвига (t), а по горизонтали - значения со сдвигом(t+1). Точки на этой карте не будут рассыпаны в случайном порядке, а будут притянуты к некой области, формируя аттрактор.

Распространённый пример хаотической системы – это двойной маятник, т.е. маятник, к концу которого прикреплен второй маятник. Вы, возможно, видели подобные маятники в магазинах подарков. Так вот если взять два одинаковых маятника, поставить рядом и отклонить их приблизительно на равную величину, то уже через несколько колебаний маятники полностью рассинхронизируются. Чем точнее мы будем соблюдать начальные условия, тем дольше маятники будут качаться в такт, однако от расходимости никуда не деться.


Такие узоры рисует лампочкой на двойном маятнике художник Джордж Иоаннидис

Долгое время теория хаоса считалась некой математической абстракцией, не имеющей подтверждения в реальных условиях. Эта проблема волновала одного японца по имени Леон Чуа, который был нацелен показать, что хаос можно создать. Для этой цели он собрал электрическую цепь.

Цепь Чуа явилась первой электрической цепью, способной генерировать хаотические сигналы. Его творение было гениально в своей простоте, цепь состояла из четырёх линейных элементов: двух конденсаторов, одной индуктивности и резистора, а также включала в себя один нелинейный локально активный элемент, на кусочно-линейной вольт-амперной характеристике которого имелась область с негативным сопротивлением. Этот элемент теперь часто называют диодом Чуа. Цепь представляет собой генератор, и диод Чуа является необходимой частью для достижения хаотических колебаний. Этот элемент недоступен как отдельный компонент, но его несложно собрать, задействовав два операционных усилителя. Другие способы реализации этой нелинейности включают в себя встречно-параллельно подключенную пару инверторов или туннельный диод (похоже, всё-таки доступен, как отдельный компонент), на ВАХ которого, как известно, имеется «долина».


Обобщённая схема генератора Чуа и уравнения, его описывающие

Математика за всем этим стоит довольно сложная, но если не вдаваться в дебри, то эта цепь описывается тремя дифференциальными уравнениями, показывающими изменение по времени напряжения на двух конденсаторах и тока через индуктивность. Численное решение этих уравнений показывает, что при определённых соотношениях между компонентами цепи, изменение значений переменных во времени приобретает хаотический характер.

Собрать генератор Чуа труда особого не составляет. Эта цепь может демонстрировать такие явления хаоса как бифуркации и хаотический аттрактор. Однако для наблюдения всех этих чудес, будет необходим осциллограф, да ещё с двумя входами. В классическом варианте, схема состоит из двух конденсаторов, одной индуктивности, семи резисторов, микросхемы с парой операционных усилителей и двух батареек на 9В (можно использовать блок питания, но питание должно быть двухполярным). Для достижения хаотического поведения, между номиналами элементов должны соблюдаться определённые соотношения. Так, ёмкость конденсатора С2 должна быть примерно 10 ёмкостей С1, отношение С2/С1 называют α. Коэффициент β показывает отношение между R, C2 и L, а именно, β = R^2 C2 / L и должен равняться приблизительно 15.


Принципиальная схема генератора с отрицательным сопротивлением на операционных усилителях

Итак, приступим к сборке. Собирать можно и на макетной плате, но чтобы сигналы были чётче, лучше компоненты спаять на печатной плате. В своей сборке я использовал конденсаторы на 47нФ и 470нФ, индуктивность на 15мГн и потенциометр на 1кОм (за неимением такового номиналом 2кОм, соединил его последовательно с резистором на 1кОм). Последовательно с индуктивностью можно (но необязательно) включить резистор малого номинала (до 10Ом), чтобы добавить «красоты» в сигналы. Диод Чуа реализован стандартным способом, с применением двух операционников. Я использовал микросхему TL082CP, по спецификации, это широкополосный операционный усилитель, советую использовать такой тип, с более простыми аналогами схема у меня не «завелась». Для создания характеристики с необходимыми наклонами, нам потребуются следующие номиналы резисторов: R1 = R2 = 220Ом, R3 = 2.2кОм, R4 = R5 = 22кОм, R6 = 3.3кОм. Запитать операционник можно двумя батарейками 9В, для корректной работы ОУ питание нам нужно двухполярное. Моя сборка топорная, согласен - проводки под питание и скрученные резисторы, другие мелкие недочёты, но для мониторинга хаотических сигналов этого хватило.


Остальную часть платы сбережём для следующих проектов

После аккуратной сборки этой несложной схемы, можно попробовать посмотреть, что за сигналы она генерирует. Сигналы будем снимать с конденсаторов C1 и С2. На моей схеме я сделал два BNC разъёма для удобства подсоединения схемы к осциллографу. Подключаем кабели к осциллографу и выбираем X-Y режим, когда по одной оси у нас будет напряжение на первом конденсаторе, а по другой – напряжение на втором. Что вывести на X, а что на Y значения не имеет. Выкрутим ручку потенциометра на максимальное значение и запитаем схему. На экране осциллографа должна появиться точка. Медленно уменьшаем значение сопротивления (лучше использовать потенциометры с большим ходом и с крупной ручкой, дабы обеспечить плавность изменения сопротивления), в какой-то момент точка должна превратиться в орбиту. Последующее уменьшение сопротивления приводит к раздваиванию этой орбиты, мы начинаем наблюдать бифуркации. Удвоения периода орбиты будут происходить и дальше с уменьшением сопротивления, расстояния между последующими раздвоениями будут постоянно и планомерно уменьшаться. Т.е. разница сопротивлений между четверной и восьмерной орбитой будет меньше, чем между четверной и двойной. Скорость, с которой интервал между бифуркациями уменьшается определяется константой Фейгенбаума. Период, до которого вам удастся наблюдать бифуркации зависит от четкости сигналов (т.е. от качества соединений) и от чувствительности потенциометра (дрожание рук тоже не на пользу). В какой-то момент стабильная орбита уступает место двухпетлевому аттрактору, который знаменует наступление хаоса. Этот аттрактор имеет три точки равновесия: одну в начале координат, и две в «дырках» петель. Типичная траектория аттрактора начинает вращение вокруг одной из «дырок», удаляясь от точки равновесия с каждым витком, затем траектория либо возвращается ближе в центру и вновь удаляется, либо направляется к другой точке равновесия, где процесс повторяется. Количество вращений в каждом случае случайно.


Образование хаоса через бифуркации

Этот аттрактор будет существовать в некотором интервале сопротивлений, а затем уступит место стабильной орбите, показывающей гармонические колебания. При достаточно малых значениях сопротивления, цепь превращается в простой колебательный контур, генерирующий синусоидальный сигнал с частотой, определённой значениями конденсаторов и индуктивности. Для большей «гибкости» цепи, потенциометрами можно заменить резисторы в цепи отрицательного сопротивления.

Если мы взглянем на спектр сигналов, то увидим, что в хаотическом режиме полоса генерации достаточно широкая и не имеет ярко выраженных пиков, к тому же начинается с постоянной составляющей.


Спектр хаотического сигнала

Схема предельно проста, но её поведение изучалось многими учёными, работающими с теорией хаоса. С её помощью изучались бифуркации и создавалась целая галерея различных аттракторов. Однако кроме чисто научного интереса, данная схема имеет и практическое применение.

Поскольку это генератор, значит, его можно использовать для радиосвязи, а раз этот генератор необычный, радиосвязь можно сделать защищённой. Существует несколько типов модуляции хаотического сигнала, от простого маскирования информационного сигнала, до высокоуровневой цифровой модуляции. Высокая чувствительность хаотического генератора позволяет использовать его в качестве детектора слабых сигналов. Также сообщалось о создании генератора случайных чисел на основе данной схемы. Кроме того, как вы заметили, спектр данного генератора лежит в звуковом диапазоне, так что этой схемой не преминули воспользоваться концептуальные музыканты.

Не знаю, многие ли захотят собрать этот хаотический генератор, ибо практической пользы от него маловато, но, мне кажется, возможность поиграться с ним и понаблюдать интересные узоры на осциллографе стоит этих копеечных деталей и получаса времени. Даже если покупать все компоненты поштучно в магазине, 200 рублей – максимум, что можно потратить, но я уверен, что у многих все детали есть в загашниках!

Данная схема может быть интересна студентам математических и электротехнических факультетов. Думаю, что демонстрация работы генератора Чуа сможет заинтересовать преподавателей, в чьи научные интересы входит теория хаоса. Спасибо всем за внимание!

​Введение в теорию хаоса

Что такое теория хаоса?

Теория хаоса это учение о постоянно изменяющихся сложных системах, основанное на математических концепциях, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему (реку́рсия - процесс повторения элементов самоподобным образом).

Неправильные представления о теории хаоса

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как "Парк юрского периода", и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса - это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок - и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы - наследственной непредсказуемости системы - а на унаследованном ей порядке - общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Теория хаоса о беспорядке

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

Применение теории хаоса в реальном мире

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса? Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама