THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

в практике измерения тока существует стандартный приём - включить последовательно в испытываемую цепь низкоомный резистор и замерить на нём падение напряжения. Если разделить напряжение (б^изм) сопротивление (/?изм)’ ^^ по закону Ома получится искомый ток (/изм)- Резистор должен быть низкоомным и высокоточным, чтобы не вносить дополнительные потери мощности в нагрузке и не ухудшать инструментальную погрешность измерений.

Математические расчёты формулы тока можно поручить МК. В его программе будет фигурировать напряжение, измеренное на образцовом резисторе через встроенный АЦП. Сопротивление резистора априори известно, поэтому остаётся лишь правильно выбрать схему сопряжения его с МК (Рис. 3.71, а…с).

Рис. 3.71. Схемы подключения резисторных датчиков тока к МК (начало):

а) сигнал отдатчика /?изм масштабируется усилителем DAL1 v\ буферизируется повторителем DA1.2. Резистор /?2 регулирует коэффициент усиления ОУ, а значит и чувствительность датчика. Повторитель сигнала DA 1.2 во многих случаях может отсутствовать;

б) делитель на резисторах /?/, R2 ослабляет сигнал с датчика /?изм примерно в 10 раз. Конденсатор С J снижает ВЧ-помехи.,Сопротивление резистора R2 выбирается по даташиту МК (в данном случае для AVR-контроллеров) сточки зрения оптимального режима работы АЦП. Резисторы RJ, /?изм ^^ сумме должны иметь сопротивление на порядок больше, чем резистор R2;

в) резистором R3 регулируется чувствительность датчика тока, выполненного на мощном проволочном резисторе /?изм- Цепочка R4, С J снижает помехи и защищает МК от всплесков напряжения;

г) пример симметричного подключения измерительной цепи к МК при помощи одинаковых резисторов /?/, R2. Диоды VDJ, VD2 ограничивают входной сигнал по амплитуде. Измерение разности напряжений проводится двухканальным АЦП МК в дифференциальном режиме;

Рис, 3.71. Схемы подключения резисторных датчиков тока к МК {продолжение):

д) транзистор VT1 открывается при определённом токе, протекающем через резистор /?изм’ после чего на входе М К формируется ВЫСОКИЙ уровень. Если напряжение в измеряемой цепи не превышает +5 В, то ограничительный резистор R2 можно заменить перемычкой;

е) датчик превышения тока через резистор /?изм с индикатором на светодиоде НИ\

ж) МК проверяет, работает ли в данный момент двигатель Л//, по наличию напряжения на низкоомном резисторе RL Схема имеет нижний порог, определяемый напряжением (/^э УТ1\

з) через двигатель Ml протекают импульсы тока, которые периодически открывают транзистор VT1. Благодаря большой ёмкости конденсатора С2, на входе МК поддерживается НИЗКИЙ уровень, который переходит в ВЫСОКИЙ уровень при остановке двигателя;

и) двухполярный датчик тока. Транзистор VTL1 работает как диод, VTL2 - как ключ. Оба транзистора входят в одну сборку и имеют идентичные параметры, отсюда высокая температурная стабильность. Необязательные диоды VD1, КШ защищают транзисторы от перегрузок;

Рис. 3.71. Схемы подключения резисторных датчиков тока к МК {продолжение): к) симметричный съём информации с датчика тока /?изм- Напряжение может подаваться с одноимённого вывода МК. Резистор /?J служит для начальной калибровки показаний;

л) напряжение на входе МК пропорционально току в измеряемой цепи с коэффициентом «1 В/1 А». Напряжение питания на выводе 8 микросхемы D/1/должно быть+5…+30 В;

м) DAI - это усилитель слабого сигнала с регулировкой чувствительности резистором R4. Резисторы /?/, /?2 должны быть одинаковыми по сопротивлению;

н) резистором R2 устанавливается порог срабатывания датчика тока. Стабилитрон VDI защищает компаратор DA1 от всплесков напряжения;

о) сигнальная и защитная «земли» электрически соединяются длинными проводами, поэтому во входные цепи усилителя?14 / вводятся фильтрующие конденсаторы C/…CJ. К сигнальной «земле» подключается МК, к защитной - резистор /?изм’ ®

Рис. 3.71. Схемы подключения резисторных датчиков токак МК. {окончание): п) микросхема DA J (фирма Zetex Semiconductors) позволяет измерять абсолютную величину тока (вывод ЮиТ) и его направление (вывод FLAG). Напряжение в измеряемой цепи на любом из выводов резистора /?изм относительно общего провода МК не должно превышать +20 В;

р) измерение тока при помощи специализированной микросхемы DA! фирмы Texas Instruments. Напряжение в измеряемой цепи относительно общего провода МК не должно превышать +36 В. Сопротивление резистора /?изм выбирается так, чтобы на нём при полной токовой нагрузке падало напряжение 50… 100 мВ. Замена микросхемы DA1 - INA193, INAt95, при этом надо подкорректировать коэффициент преобразования в управляющей программе МК;

с) измерение тока при помощи инструментального усилителя DA1 фирмы Analog Devices. Конденсаторы С1…СЗ устраняют высокочастотные помехи и совместно с резисторами R1, R2 симметрируют схему.

Эта конструкция родилась оттого, что в свое время я не имел доступа к тем замечательным современным микросхемам, которые были специально разработаны для считывания напряжения с токовых датчиков. Мне необходимо было создать аналог такой микросхемы, максимально простой, но не менее точный. По-моему, получившаяся схема вполне справляется со своей задачей.

Автомобильный датчик тока положительной шины питания на дискретных компонентах.

Первый усилитель тока на транзисторе Q2 имеет усиление 6.2 (Рисунок 1). На Q1 собран усилитель термокомпенсации, управляемый микросхемой IС1В и поддерживающий напряжение коллектора Q1 на постоянном уровне, независимо от температуры схемы. В качестве опорного напряжения схемы используется напряжение источника питания системы 5 В. Указанные на схеме напряжения были измерены в реальном устройстве.

Рисунок 1. Q1 и Q2 преобразуют падение напряжения на токоизмерительном резисторе R3 в синфазное напряжение, согласованное со входными уровнями АЦП микроконтроллеров.

IС1А усиливает разность напряжений на коллекторах транзисторов Q1 и Q2. Коэффициент усиления ОУ этого равен 4.9. R3 образован двумя резисторами для поверхностного монтажа, установленными друг на друга. При выходном напряжении 5 В максимальный ток, измеряемый схемой, равен 25 А.

Два стабилитрона защищают схему от бросков напряжения бортовой сети автомобиля. Как известно, пики напряжения в ней могут достигать 90 В. Если схема спровоцировала вас на критические замечания, подберите номиналы R6 и R7 с минимальным разбросом. Если и это сочтете недостаточным, согласуйте R1 и R4.

Я ничего такого не делал, но работа схемы меня вполне удовлетворяет. В конструкции использованы резисторы для поверхностного монтажа. За исключением R3, все имеют типоразмер 0805 и допуск 1 %.

Не забудьте подобрать для вашей печатной платы стеклотекстолит с фольгой достаточной толщины и сделать широкую токопроводящую дорожку, а для R3 предусмотреть двухпроводное подключение по схеме Кельвина. При максимальном токе 25 А эта схема нагревается очень незначительно.

Один из самых простых способов измерения тока в электрической цепи - это измерение падения напряжения на резисторе, включенном последовательно с нагрузкой. Но при прохождении тока через этот резистор, на нем выделяется бесполезная мощность в виде тепла, поэтому оно выбирается минимально возможной величины, что в свою очередь влечет за собой последующее усиление сигнала. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки.

Схема измерения тока нагрузки в отрицательном полюсе приведена на рисунке 1.

Эта схема и часть информации заимствована из журнала «Компоненты и технологии» №10 за 2006г. Михаил Пушкарев [email protected]
Преимущества:
низкое входное синфазное напряжение;
входной и выходной сигнал имеют общую «землю»;
простота реализации с одним источником питания.
Недостатки:
нагрузка не имеет непосредственной связи с «землей»;
отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит много ОУ, предназначенных для работы с однополярным питанием. Схема измерения тока с применением операционного уси¬лителя приведена на рис. 1. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется двухполярное питание усилителя.

Измерение тока в положительном полюсе нагрузки


Достоинства:
нагрузка заземлена;
обнаруживается короткое замыкание в нагрузке.
Недостатки:
высокое синфазное входное напряжение (зачастую очень высокое);
необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).
Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

В схеме на рис. 2 можно применить любой из подходящих по допустимому напряжению питания операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

Но есть ОУ, которые способны работать при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 3, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В. Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. Для измерения тока в положительном полюсе есть и специализированные микросхемы, например — INA138 и INA168.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C.
Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

OPA454

— новый недорогой высоковольтный операционный усилитель компании Texas Instruments с выходным током более 50 мА и полосой пропускания 2,5 МГц. Одно из преимуществ — высокая стабильность OPA454 при единичном коэффициенте усиления.

Внутри ОУ организована защита от превышения температуры и перегрузки по току. Работоспособность ИС сохраняется в широком диапазоне напряжений питания от ±5 до ±50 В или, в случае однополярного питания, от 10 до 100 В (максимум 120 В). У OPA454 существует дополнительный вывод «Status Flag» — статусный выход ОУ с открытым стоком, — что позволяет работать с логикой любого уровня. Этот высоковольтный операционный усилитель обладает высокой точностью, широким диапазоном выходных напряжений, не вызывает проблем при инвертировании фазы, которые часто встречаются при работе с простыми усилителями.
Технические особенности OPA454:
Широкий диапазон питающих напряжений от ±5 В (10 В) до ±50 В (100 В)
(предельно до 120 В)
Большой максимальный выходной ток > ±50 мА
Широкий диапазон рабочих температур от -40 до 85°С (предельно от -55 до 125°С)
Корпусное исполнение SOIC или HSOP (PowerPADTM)
Данные на микросхему приведены в «Новости электроники» №7 за 2008г. Сергей Пичугин

Усилитель сигнала токового шунта на основной шине питания.

В радиолюбительской практике для схем, параметры которых не столь жесткие, подойдут дешевые сдвоенные ОУ LM358, допускающие работу с входными напряжениями до 32В. На рисунке 5 показана одна из многих типовых схем включения микросхемы LM358 в качестве монитора тока нагрузки. Кстати не во всех «даташитах» имеются схемы ее включения. По всей вероятности эта схема явилась прототипом схемы, приведенной в журнале «Радио» И. Нечаевым и о которой я упоминал в статье «Индикатор предельного тока ».
Приведенные схемы очень удобно применять в самодельных БП для контроля, телеметрии и измерения тока нагрузки, для построения схем защиты от коротких замыканий. Датчик тока в этих схемах может иметь очень маленькое сопротивление и отпадает необходимость подгонки этого резистора, как это делается в случае обычного амперметра. Например, напряжение на резисторе R3, в схеме на рисунке 5 равно: Vo = R3∙R1∙IL / R2 т.е. Vo = 1000∙0,1∙1A / 100 = 1В. Одному амперу тока, протекающему через датчик, соответствует один вольт падения напряжения на резисторе R3. Величина этого соотношения зависит от величины всех резисторов входящих в схему преобразователя. Отсюда следует, что сделав резистор R2 подстроечным, можно спокойно им компенсировать разброс сопротивления резистора R1. Это относится и к схемам, показанным на рисунках 2 и 3. В схеме, представленной на рис. 4, можно изменять сопротивление нагрузочного резистора RL. Для уменьшения провала выходного напряжения блока питания, сопротивление датчика тока – резистор R1 в схеме на рис.5 вообще лучше взять равным 0,01 Ом, изменив при этом номинал резистора R2 на 10 Ом или увеличив номинал резистора R3 до 10кОм.

Для обустройства электроснабжения гаража очень удобно знать ток, который потребляется тем или иным устройством, включаемым в эту сеть. Спектр этих устройств достаточно широк и увеличивается постоянно.: дрель, точило, болгарка, нагреватели, сварочные аппараты, ЗУ, промышленный фен, да и много ещё чего….

Для измерения переменного тока, как известно, в качестве собственно токового датчика, как правило, применяют трансформатор тока. Этот трансформатор, в общем похож на обычный понижающий, включенный как бы «наоборот», т.е. его первичная обмотка –это один или несколько витков (или шина) пропущенные через сердечник - магнитопровод, а вторичная представляет собой катушку с большим количеством витков тонкого провода, располагаемую на этом же магнитопроводе (рис1).

Однако, промышленные трансформаторы тока достаточно дороги, громоздки и зачастую рассчитаны на измерение сотен ампер. Трансформатор тока, рассчитанный на диапазон бытовой сети, встретишь в продаже нечасто. Именно по этой причине родилась идея использовать для этой цели электромагнитное реле постоянного/переменного тока, без какого либо использования контактной группы такого реле. В самом деле, любое реле уже содержит катушку с большим количеством витков тонкого провода и единственное, что необходимо для превращения его в трансформатор – это обеспечить вокруг катушки наличие магнитопровода с минимумом воздушных зазоров. Кроме этого, конечно, для такой конструкции необходимо достаточно места, чтобы пропустить первичную обмотку, представляющую вводную сеть.На снимке показан такой датчик, изготовленный из реле типа РЭС22 на 24 В постоянного тока. Это реле содержит обмотку сопротивлением примерно 650 ом. Скорее всего, подобное применение могут найти и многие реле других типов и в том числе остатки неисправных магнитных пускателей и т.п. Для обеспечения магнитопровода якорь реле механически блокируется при максимальном сближении с сердечником. Реле, как бы постоянно находится в сработке. Далее, вокруг катушки делается виток первичной обмотки (на снимке это тройной провод синего цвета).

Собственно, на этом датчик тока готов, без лишней суеты с наматыванием провода на катушку. Конечно, данное устройство трудно считать полноправным трансформатором и ввиду незначительной площади поперечного сечения вновь полученного магнитопровода и, возможно, ввиду отличия характеристики его намагничивания от идеальной. Однако все это оказывается менее важно ввиду того, что мощность такого «трансформатора» нам нужна минимальна и необходима лишь для того, чтобы обеспечить пропорциональное (желательно линейное) отклонение стрелочного индикатора магнитоэлектрической системы в зависимости от тока в первичной обмотке.

Возможная схема сопряжения датчика тока с таким индикатором изображена на схеме (рис.2). Она довольно проста и напоминает схему детекторного приемника. Выпрямительный диод (Д9Б) – германиевый и выбран ввиду малости падения на нем напряжения (около 0,3 В). От этого параметра диода будет зависеть порог минимального значения тока, который способен определить данный датчик. В этой связи, для этого лучше использовать так называемые детекторные диоды с малым падением напряжения, например ГД507 и подобные. Пара кремниевых диодов кд521в установлена в целях защиты стрелочного прибора от перегрузки, которая возможна при значительных бросках тока, вызванных, например, коротким замыканием внутри сети, включением мощных трансформаторов или сварочника. Это весьма обычный в таких случаях прием. Следует заметить, ч то такая простейшая схема имеет тот недостаток что абсолютно может не «увидеть» нагрузку в виде тока одной полярности, как например, нагреватель или ТЭН, подключенный через выпрямительный диод. В этих случаях применяют несколько «усложненную» схему, например, в виде выпрямителя с удвоением напряжения (рис.3).

Тóковые клещи позволяют производить измерение тока бесконтактным способом - просто обхватив этот провод. Клещи для переменного тока делаются как правило на основе тóкового трансформатора, выпускаются уже очень давно и стоят копейки. Клещи для постоянного тока - имеют в своей основе линейные датчик(и) холла, и стали доступны по цене не так давно. В целом, клещи можно поделить на клещи для переменки и клещи для постоянки, а по конструкции - на автономные и приставки. Из автономных недорогих AC/DC могу назвать ut210e, ms2108A, а из приставок - чуть подороже appa 32, hantek cc65/cc650, ну и вот «новый игрок» в нижнем ценовом диапазоне - Holdpeak.


Вообще, изначально клещи предназначены в пару к мультиметру - сам есть соответствующее положение на селекторе. Но в принципе могут работать с любым другим тестером или даже осциллографом, потому что выдают напряжение прямо пропорциональное измеряемому току - 1мВ соответствует 1А.

Клещи имеют размеры 175х80мм (без боковой кнопки, открывающей «пасть»), вес около 300г, длина провода 70см.







В комплекте есть бумажка, назвать инструкцией которую язык не поворачивается. Там написано примерно следующее: подключите клещи к тестеру, включите, выберите на тестере режим «клещи», переключите клещи и тестер в соответствующий AC/DC режим, нажмите на тестере кнопку REL - и измеряйте. Никаких цифр, погрешностей, пределов - ничего. Впрочем, инструкция от HP890cn обещает 2.5%/3% +5 для DC и AC соответственно.

На передней панели кнопка питания, светодиод индицирующий включенное состояние и кнопка AC/DC. Забегая вперед, скажу что отличие AC от DC - во включенном последовательно конденсаторе, ну и подстроечники для AC и DC - разные.

Питаются от «кроны», потребляемый ток 4.4мА



Выходной сигнал - 1мВ=1А

Внутренний мир прост и незатейлив - LDO 7550 на 5В, преобразователь из +5В в -5В 7660 и операционный усилитель TL062



С обратной стороны платы - три подстроечных резисторы, кнопки и светодиод питания.

Дополнительная информация

пара фоток с отпаянными микросхемами и переключателем:






Схема (если я ничего не напутал):

Названия микросхем, кнопок, разъемов - условные (скажем, вместо 7550 нарисовал 78L05, разъемы взяты тупо по числу контактов и т.д.). Конденсаторы не отпаивал и не прозванивал, для резисторов указаны надписи на них и их перевод в реальное значение (ибо для 0603 с 1% точности уже обозначение не цифра-цифра-множитель, а целая таблица)

Если я правильно понимаю (а с высокой вероятностью я таки ошибаюсь) - VR1 задаёт начальное смещение, то есть регулирует ноль, а VR2 и VR3 - калибровка по постоянке и переменке соответственно.

Режим AC отличается кроме другой выходной цепи и потенциометра - включенным последовательно конденсатором. Нафига это нужно - как по мне тайна великая есть. Видимо, чтобы отсечь постоянное смещение, которое неминуемо в клещах на датчиках холла. Чем это будет отличаться от переключения тестера в режим AC - уж я и не знаю. Как по мне - лучше бы подстроечник для этой цели ввели, оперативно 0 выставлять на постоянке.

Теперь измерения. Как я уже писал в заголовке - клещи рассчитаны на большие токи. Поэтому на малых токах точность будет никакая, но тем не менее попробуем проверить.

Постоянка:

Переменка:

Как видим, если на постоянке точность еще куда ни шло, то на переменке ну совсем не в дугу. впрочем, измерение переменных токов меня волнуют мало, а таких высоких - не волнуют вовсе, так что лично для меня это проблемой не является, но если я правильно понимаю, можно при желании подстроить (?) при помощи VR2 и VR3, что я и сделал для постоянного тока, хоть и не сфоткал. Но получилось не более +-0.1А с эталонным тестером, на вышеприведенных же токах, что я считаю вполне себе неплохим результатом. Ну не рассчитаны они на такие токи. Им нужны десятки и сотни ампер - там они покажут точнее и «раскроются в полной мере».

Теперь - маленькая доработка. Так как я планировал использовать данные клещи для диагностики, в частности - измерения стартерного тока, то я решил заменить провод на разъем. Ну и сразу скажу, что в этой роли пока не пробовал - не было возможности, времени и желания. ;)

Для этого я отпаял провод, припаял к нему разъем «тюльпан»-папу, а в клещи поставил соответствующее гнездо. Для установки гнезда я просверлил корпус сверлом 10мм, после чего взял пластиковую пластинку размерами примерно 10х20х1.5мм, просверлился в ней диаметром 6мм, прикрутил к ней гнездо и вставил в корпус - между корпусом и бывшим зажимом провода:











Как по мне - стало не хуже, к тому же появилась возможность подключения «штатным» кабелем. Можно, естественно, поставить разъем BNC, ну либо воткнуть в этот разъем переходник. Высоких частот тут не будет, так что необходимости в BNC разъемах как-то и нету.

После этой доработки можно подключиться к осциллографу. Для этого я собрал на каком-то полевике ключик, который запустил от внешнего генератора и нагрузил на мощный резистор. Понятно, что всё это несерьёзно, ну да что есть - то есть:

Как видим, сигнал достаточно шумный, что вообще говоря неудивительно - я вообще как-то слабо понимаю использование преобразователей типа 7660 в схемах с микровольтными/милливольтными сигналами. Полюс полное отсутствие экранирования, так что и внешние наводки исключать никак нельзя.
По частоте - тоже ничего выдающегося.

Для сравнения - сигнал с ut210e в режиме 20А:

Амплитуда выше, сигнал чище.

Подытоживая.

Честно говоря, впечатления неоднозначные. Так и хочется написать «как за свои деньги...». То есть да, это самая дешманская модель на рынке. «Из коробки» достаточно сильно врёт, что, впрочем, скорее всего особенности конкретного экземпляра, да и вроде как поддаётся подстройке.

Хотелось бы видеть хоть минимальное экранирование, также хотелось бы переключение пределов 600/60А - но тут в принципе понятно что переключения такого нет совершенно осознанно, оно ж идёт «комплектом» к тестеру, где в режиме клещей предел 600А. С другой стороны можно было на тестере сделать 60/600А - но не сделали. В результате имеем низкую цену - но и низкую точность «прицепом», а также не сильно красивый сигнал в плане помех.

Подумываю натыкать пару дросселей по питанию, а также раздумываю над введением режима 60А (точнее, до 60 не дотянуть, где-то 40 наверно будет максимум), и тут мне хотелось бы спросить совета у более грамотных схемотехников. потому что как по мне, то самый «незамутнённый» способ - впереть тупо еще один ОУ на выходе с коэффициентом усиления 10 и не запариваться;) Как вариант - изменить коэффициент усиления имеющегося ОУ, но что-то у меня с наскоку не прокатило - вероятно нужно еще ноль будет точнее выставлять в этом случае. Короче говоря, с радостью выслушаю в комментах любые советы кроме выкинуть. ;)

Планирую купить +8 Добавить в избранное Обзор понравился +37 +56

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама