THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

pn переход это тонкая область, которая образуется в том месте, где контактируют два полупроводника разного типа проводимости. Каждый из этих полупроводников электрически нейтрален. Основным условием является то что в одном полупроводнике основные носители заряда это электроны а в другом дырки.

При контакте таких полупроводников в результате диффузии зарядов дырка из p области попадает в n область. Она тут же рекомбенирует с одним из электронов в этой области. В результате этого в n области появляется избыточный положительный заряд. А в p области избыточный отрицательный заряд.

Таким же образом один из электронов из n области попадает в p область, где рекомбенирует с ближайшей дыркой. Следствием этого также является образование избыточных зарядов. Положительного в n области и отрицательного в p области.

В результате диффузии граничная область наполняется зарядами, которые создают электрическое поле. Оно будет направлено таким образом, что будет отталкивать дырки находящиеся в области p от границы раздела. И электроны из области n также будут отталкиваться от этой границы.

Если говорить другими словами на границе раздела двух полупроводников образуется энергетический барьер. Чтобы его преодолеть электрон из области n должен обладать энергией больше чем энергия барьера. Как и дырка из p области.

Наряду с движением основных носителей зарядов в таком переходе существует и движение неосновных носителей зарядов. Это дырки из области n и электроны из области p. Они также двигаются в противоположную область через переход. Хотя этому способствует образовавшееся поле, но ток получается, ничтожно мал. Так как количество неосновных носителей зарядов очень мало.

Если к pn переходу подключить внешнюю разность потенциалов в прямом направлении, то есть к области p подвести высокий потенциал, а к области n низкий. То внешнее поле приведет к уменьшению внутреннего. Таким образом, уменьшится энергия барьера, и основные носители заряда смогут легко перемещаться по полупроводникам. Иначе говоря, и дырки из области p и электроны из области n будут двигаться к границе раздела. Усилится процесс рекомбинации и увеличится ток основных носителей заряда.

Рисунок 1 — pn переход, смещённый в прямом направлении

Если разность потенциалов приложить в обратном направлении, то есть к области p низкий потенциал, а к области n высокий. То внешнее электрическое поле сложится с внутренним. Соответственно увеличится энергия барьера не дающего перемещаться основным носителям зарядов через переход. Другими словами электроны из области n и дырки из области p будут двигаться от перехода к внешним сторонам полупроводников. И в зоне pn перехода попросту не останется основных носителей заряда обеспечивающих ток.

Рисунок 2 — pn переход, смещённый в обратном направлении

Если обратная разность потенциалов будет чрезмерно высока, то напряжённость поля в области перехода увеличится до тех пор, пока не наступит электрический пробой. То есть электрон ускоренный полем не разрушит ковалентную связь и не выбьет другой электрон и так далее.

Для создания различных полупроводниковых приборов, применяемых в электронных устройствах, используют кристаллические структуры, состоящие из чередующихся областей полупроводников п - и р -типа. Взависимости от типа полупроводникового прибора, число областей с разными типами проводимости может быть две и более. Основу любого полупроводникового прибора составляют электронно-дырочные переходы.

Электронно-дырочным переходом (или кратко р-п-переходом ) называют тонкий слой между двумя областями полупроводникового кристалла, одна из которых имеет электронную, а другая - дырочную электропроводность .

Технологический процесс создания электронно-дырочного перехода может быть различным: сплавление, диффузия одного вещества в другое, эпитаксия (ориентированный рост одного кристалла на поверхности другого) и др. По конструкции электронно-дырочные переходы могут быть симметричными (п п = р р ) и несимметричными (п п >> p p или п п << р р , при этом концентрации основных носителей отличаются в 100-1000 раз), резкими и плавными, плоскостными и точечными и др. Однако для всех типов переходов основным свойством является несимметричная электропроводность, при которой в одном направлении кристалл пропускает ток, а в другом - не пропускает.

Устройство полупроводникового кристалла с электронно-дырочным переходом показано на рисунке 1.5. Одна часть этого кристалла легирована (обогащена) донорной примесью и имеет электронную проводимость (п -область). Другая часть легирована акцепторной примесью и имеет дырочную проводимость (р -область). Кроме основных носителей в обеих частях кристалла имеется небольшая концентрация неосновных носителей (соответственно дырок в п -области и электронов в р -области).

Сразу после создания р -п -перехода при отсутствии внешнего электрического поля электроны из п -области стремятся проникнуть в р -область, где концентрация электронов значительно ниже. Аналогично, дырки из р -области перемещаются в п -область. В результате встречного движения противоположных зарядов возникает так называемый диффузионный ток р -п -перехода. Электроны, перешедшие в р -область, рекомбинируют с дырками, в результате чего в р -области вблизи границы раздела двух типов полупроводников появятся отрицательно заряженные неподвижные ионы акцепторной примеси. В свою очередь, уход электронов из п -области приводит к появлению в приконтактной части п -области нескомпенсированных положительно заряженных неподвижных ионов донорной примеси.

Рисунок 1.5 - Упрощенная структура р-п -перехода

Одновременно с перемещением электронов, из р -области в п -область наблюдается диффузионное перемещение дырок. Этот процесс сопровождается созданием таких же неподвижных положительных и отрицательных ионов вблизи границы раздела двух типов полупроводников в п -области и р -области.


Двойной слой неподвижных электрических зарядов (ионов) создает в области р -п -перехода объемный пространственный заряд, наличие которого приводит к появлению внутреннего электрического поля ( на рисунке 1.5). Вектор этого поля направлен таким образом, что оно препятствует дальнейшему диффузионному движению основных носителей зарядов. Поэтому через короткий промежуток времени на р-п -переходе устанавливается динамическое равновесие, он становится электрически нейтральным , а ток через р-п -переход - равным нулю .

Разность потенциалов, образованную приграничными зарядами, называют контактной разностью потенциалов y к (потенциальным барьером ), преодолеть которую носители без «сторонней помощи» не могут. Вместе с тем возникшее в р -п -переходе поле не препятствует движению неосновных носителей через переход, так как для них оно будет ускоряющим. Неосновные носители создают дрейфовый ток р -п -перехода.

Распределение плотности объемного заряда r в р -п -переходе при отсутствии внешнего электрического поля показано на рисунке 1.5.

Р-п -переход представляет собой слой полупроводника с низкой концентрацией подвижных носителей зарядов (обедненный слой ). Этот слой имеет повышенное электрическое сопротивление. Поскольку концентрация основных носителей зарядов в областях полупроводника различна, то и ширина обедненного слоя в р- и п- областях также будет различной (в области с меньшей концентрацией основных носителей она будет шире).

Контактная разность потенциалов y к на р-п- переходе зависит от концентрации примесей в областях полупроводника и определяется выражением:

где - температурный потенциал;

п i - концентрация носителей зарядов в нелегированном полупроводнике;

k » 1,38 × 10 -23 Дж/К - постоянная Больцмана;

Т - абсолютная температура, К;

q » 1,6×10 -19 Кл - заряд электрона.

При нормальной температуре (Т = 300 К) j Т » 26 мВ. Контактная разность потенциалов для германия при этом имеет значение 0,2-0,3 В, а для кремния - 0,6-0,7 В.

Высоту потенциального барьера можно изменять приложением внешнего напряжения к р-п- переходу. Если внешнее напряжение создает в р -п -переходе поле, вектор напряженности которого совпадает по направлению с вектором напряженности внутреннего поля (рисунок 1.6, а ), то высота потенциального барьера увеличивается, при обратной полярности приложенного напряжения высота потенциального барьера уменьшается (рисунок 1.6, б ). Если полярность поля, создаваемого приложенным внешним напряжением, противоположна полярности собственного (внутреннего) поля и внешнее напряжение равно контактной разности потенциалов, то потенциальный барьер исчезает полностью.

Рисунок 1.6 - Прямое и обратное смещение р-п -перехода

Если приложенное напряжение снижает потенциальный барьер, то оно называется прямым , а если повышает - то обратным .

Обратный ток (i обр) в р -п -переходе вызывается неосновными носителями одной из областей, которые, дрейфуя в электрическом поле области объемного заряда, попадают в область, где они уже являются основными носителями. Так как концентрация основных носителей существенно превышает концентрацию неосновных, то появление незначительного дополнительного количества основных носителей практически не изменит равновесного состояния полупроводника. Таким образом, обратный ток зависит только от количества неосновных носителей, появляющихся на границах области объемного заряда. Его предельное значение (обозначим I Т ) называют обратным током насыщения или тепловым током .

Внешнее приложенное напряжение определяет скорость перемещения этих носителей из одной области в другую, но не число носителей, проходящих через переход в единицу времени. Следовательно, обратный ток через р-п- переход является током проводимости и не зависит от высоты потенциального барьера, т. е. он остается постоянным при изменении обратного напряжения на переходе.

При прямом смещении p-п- перехода появляется диффузионный ток , вызванный диффузией основных носителей, преодолевающих потенциальный барьер. Пройдя р-п -переход, эти носители попадают в область полупроводника, для которой они являются неосновными носителями. Концентрация неосновных носителей при этом может существенно возрасти по сравнению с равновесной концентрацией. Такое явление носит название инжекции носителей.

Таким образом, при протекании прямого тока через переход из электронной области в дырочную будет происходить инжекция электронов , а из дырочной области в электронную будет происходить инжекция дырок .

Особенности устройства р -п -перехода и процессы, протекающие в нем, рассмотрены ранее.

Гетеропереходом называют переходный слой с существующим в нем диффузионным электрическим полем между двумя различными по химическому составу полупроводниками. При этом проводимости двух полупроводников, образующих гетеропереход, могут быть разными или одинаковыми. Кроме этого сам переход может быть выпрямляющим или омическим .

Омическим называется переход, электрическое сопротивление которого не зависит от направления тока через него.

На рисунке 1.10 показаны структуры двух разновидностей гетеропереходов (рисунок 1.10, а , б ), а также омического перехода на контакте полупроводников с одним типом электропроводности (рисунок 1.10, в ).

а б в

Рисунок 1.10 - Разновидности электрических переходов в полупроводниковых кристаллах

На рисунке 1.11 показаны структуры полупроводниковых диодов с выпрямляющим электрическим переходом в виде р-п- перехода (рисунок 1.11, а ) и на контакте Шоттки (рисунок 1.11, б ).

а б

Рисунок 1.11 - Структуры полупроводниковых диодов на основе

р-п -перехода (а ) и перехода Шотки (б )

Буквой Н на рисунке 1.11 обозначены невыпрямляющие (омические) переходы, а буквой В - выпрямляющие электрические переходы. Буквой М обозначен металлический слой.

В основе работы большинства полупроводниковых диодов лежат процессы, происходящие в р-п -переходе, причем в реальных диодах, как правило, используются несимметричные р-п -переходы. В таких переходах одна из областей кристалла (область с большей концентрацией основных носителей) бывает достаточно низкоомной (как правило - это р -область), а другая - высокоомной.

На рисунке 1.12 показано распределение основных носителей и области р-п -перехода в кристалле полупроводникового диода.

Рисунок 1.12 - Распределение носителей зарядов в кристалле полупроводникового диода

Вывод от р -области диода называют анодом , а от п -области - катодом . Условное графическое обозначение (УГО) диода в общем случае имеет вид, представленный на рисунке 1.13.

Рисунок 1.13 - УГО диода

Если положительный вывод источника напряжения подключен к аноду диода, а отрицательный - к катоду, то приложенное напряжение называется прямым , в противном случае - обратным . Ток через диод при прямом смещении р-п -перехода практически полностью определяется потоком основных носителей низкоомной области. Поэтому ее называют эмиттером. В связи с большей концентрацией носителей в низкоомной области ширина р-п -перехода в ней оказывается меньше, чем в высокоомной. Если различие в концентрации основных носителей велико, то р-п -переход почти целиком расположится в высокоомной области, которая получила название базы.

Вольт-амперная характеристика полупроводникового диода определяется, в общем случае, ВАХ р-п -перехода. На рисунке 1.14 показана ВАХ диода в сравнении с ВАХ обычного (анализируемого ранее) р-п -перехода. Различия в характеристиках связаны с тем, что при анализе свойств р-п -перехода не учитывались особенности структуры кристалла диода, сопротивления полупроводниковых слоев, ширина перехода.

Рисунок 1.14 - Общий вид ВАХ диода

Если к диоду приложено прямое напряжение, превышающее по величине контактную разность потенциалов (в частности, для германиевого диода y к = 0,2-0,3 В, для кремниевого - y к = 0,6-0,7 В), то диод открыт и пропускает прямой ток (прямая ветвь ВАХ, рисунок 1.14). При этом его сопротивление незначительно (десятки-сотни Ом) и падение напряжения на диоде составляет десятые доли вольт.

При подаче обратного напряжения по абсолютной величине меньшего U обр max диод заперт и через него протекает пренебрежительно малый обратный ток I обр (обратная ветвь ВАХ, рисунок 1.14). Если обратное напряжение превысит значение U обр max , то наступает пробой р-п -перехода диода (сначала электрический, а при дальнейшем увеличении напряжения - тепловой), при котором обратный ток резко возрастает. В случае возникновения теплового пробоя диод выходит из строя («сгорает»).

В зависимости от способа изготовления р -п -перехода различают точечные , сплавные , сварные и диффузионные диоды. В точечных диодах (рисунок 1.15, а ) к предварительно очищенной поверхности кристалла полупроводника электронной проводимости прижимается жесткая заостренная игла из сплава вольфрама с молибденом. После герметизации собранного диода через него пропускают электрические импульсы большой мощности. Под действием этих импульсов приконтактная область полупроводника сильно нагревается, и непосредственно под острием иглы образуется небольшая по размерам (от 5 до 40 мкм) р -область.

Рисунок 1.15 - Способы получения р-п -перехода

В сплавных и сварных диодах (рисунок 1.15, б , в ) р -п -переход получают с помощью тонкой проволочки, содержащей атомы акцепторной примеси, при ее вплавлении или сварке с кристаллом полупроводника п -типа.

В диффузионных диодах используют метод диффузии донорных или акцепторных примесей в полупроводниковый кристалл, имеющий противоположный тип электропроводности. Диффундирующие атомы изменяют тип электропроводности небольшой части кристалла, что создает р -п -переход. Для получения малой емкости в рассматриваемом виде диодов после диффузии проводят травление приповерхностных слоев полупроводника, после которого р -п -переход сохраняется на очень малом участке, имеющем вид столика, возвышающегося над остальным кристаллом (рисунок 1.15, г ).

Эту полупроводниковую структуру называют мезаструктурой (мезадиффузионные диоды). Другую разновидность диффузионных диодов представляют собой планарные и эпитаксиально-планарные приборы (рисунок 1.15, д ), в которых диффузия примеси осуществляется через специальные «окна» в защитной окисной пленке (например, из двуокиси кремния SiO 2). Кроме небольших значений барьерной емкости в диффузионных диодах удается значительно снизить время жизни неравновесных носителей заряда за счет дополнительной диффузии золота.

Цифрами на рисунке 1.15 обозначены: 1 - р -п -переход; 2 - кристалл; 3 - омический контакт.

Для того чтобы количественно характеризовать диоды, используют различные параметры, названия и количество которых зависят от типов диодов. Некоторые из параметров используют при характеристике диодов большинства подклассов.

К ним, в частности, относятся:

I пр макс - максимально допустимый постоянный прямой ток;

U пр - постоянное прямое напряжение, соответствующее заданному току;

U обр макс - максимально допустимое обратное напряжение диода;

I обр макс - максимально допустимый постоянный обратный ток диода;

r диф - дифференциальное сопротивление диода (при заданном режиме работы).

В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов I пр макс составляет килоамперы, а U обр макс - киловольты.

Классификация полупроводниковых диодов

Полупроводниковые диоды весьма многочисленны, и одним из основных классификационных признаков служит их назначение, которое связано с использованием определенного явления в р -n -переходе.

Первую группу составляют выпрямительные диоды , для которых основным является вентильный эффект (большая величина отношения прямого тока к обратному), но не предъявляется жестких требований к временным и частотным характеристикам.

В настоящее время наибольшее распространение получили кремниевые выпрямительные диоды, которые имеют следующие преимущества:

Примерно на два порядка меньшие (по сравнению с германиевыми) обратные токи при одинаковом напряжении;

Высокое значение допустимого обратного напряжения, которое достигает 1000-1500 В, в то время как у германиевых диодов оно находится в пределах 100-400 В;

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +150 °С, германиевых - от -60 до +85 °С.

Однако в выпрямительных устройствах низких напряжений выгоднее применять германиевые диоды, так как их сопротивление при прямом смещении р -п -перехода в 1,5-2 раза меньше, чем у кремниевых, при одинаковом токе нагрузки, что уменьшает мощность, рассеиваемую внутри диода.

По значению выпрямленного тока выпрямительные диоды делят на диоды малой (I пр < 0,3 А), средней (0,3 А < I пр < 10 А) и большой (I пр > 10 А ) мощности.

Вторая группа диодов - высокочастотные и импульсные . В них также используют вентильный эффект, но это маломощные приборы, работающие при высоких частотах (в детекторных, смесительных каскадах) или в быстродействующих импульсных устройствах. Для диодов этих подклассов более важными являются параметры, характеризующие их быстродействие, в частности, емкость диода (обычно десятые доли-единицы пФ), время установления прямого и восстановления обратного сопротивлений (сотые доли-единицы микросекунд), частота без снижения режимов.

Условное графическое обозначение на принципиальных электрических схемах выпрямительных, высокочастотных и импульсных диодов одинаково и соответствует представленному на рисунке 1.13.

В диодах четвертой группы используют емкостные свойства р -п -перехода. В связи с тем, что р -п -переход представляет собой область , обедненную носителями зарядов , то его можно рассматривать как своеобразный плоский конденсатор , емкость которого определяется шириной р -п -перехода. Если к диоду приложить обратное напряжение и изменять его величину, то ширина р -п -перехода также будет изменяться, что эквивалентно изменению его емкости. Такое свойство р -п -перехода позволяет использовать полупроводниковый диод в качестве прибора с электрически управляемой емкостью - варикапа . Вольт-фарадная характеристика и УГО варикапа показаны на рисунке 1.17.

Кроме рассмотренных выше диодов в электронных устройствах широко используют диоды Шотки (рисунок 1.18, а ), а в специальных случаях - туннельные диоды (рисунок 1.18, б ).

Рисунок 1.17 - УГО и вольт-фарадная характеристика варикапа

а б

Рисунок 1.18 - УГО и вольт-амперные характеристики диода Шотки (а ) и туннельного диода (б )

Основным элементом диодов Шотки является электронный переход металл - полупроводник с нелинейной ВАХ. Свойства таких диодов во многом сходны со свойствами диодов с несимметричными р -п -переходами. Основное отличие диодов Шотки от диодов на основе электронно-дырочного перехода состоит в том, что в них формирование тока осуществляется основными носителями зарядов и не связано с инжекцией неосновных носителей зарядов и их рассасыванием, что обеспечивает значительно лучшие частотные характеристики таких диодов и повышает их быстродействие в импульсных устройствах.

Кроме того, сопротивление барьера Шоттки при прямом напряжении меньше прямого сопротивления р -n -перехода, поэтому прямые ветви ВАХ выпрямительного диода с барьером Шотки и диода с р-п- переходом отличаются. Диоды Шотки широко применяют в качестве элементов цифровых микросхем для улучшения их характеристик.

Туннельный диод - занимает особое место среди полупроводниковых диодов из-за свойственной ему внутренней положительной обратной связи по напряжению и хороших динамических свойств. Его ВАХ (рисунок 1.18, б ) имеет участок с отрицательным дифференциальным сопротивлением (участок 1 -2 ). Это позволяет использовать туннельный диод в качестве активного элемента в усилителях и автогенераторах СВЧ-диапазона.

Особую группу составляют излучающие диоды и фотодиоды .

Излучающий диод (УГО представлено на рисунке 1.19, а ) - полупроводниковый диод, излучающий под действием приложенного напряжения из области р -п -перехода кванты энергии . Излучение испускается через прозрачную стеклянную пластину, размещенную в корпусе диода.

а б

Рисунок 1.19 - УГО излучающего диода (а ) и фотодиода (б )

По характеристике излучения излучающие диоды делятся на две группы:

Диоды с излучением в видимой области спектра, получившие название светодиоды ;

Диоды с излучением в инфракрасной области спектра, получившие название ИK-диоды.

Принцип действия обоих групп диодов одинаков и базируется на самопроизвольной рекомбинации носителей заряда при прямом токе через выпрямляющий электрический переход . Известно, что рекомбинация носителей заряда сопровождается освобождением кванта энергии. Спектр частот последней определяется типом исходного полупроводникового материала. Основными материалами для изготовления светодиодов служат фосфид галлия , арсенид-фосфид галлия , карбид кремния . Большую часть энергии, выделяемой в этих материалах при рекомбинации носителей заряда, составляет тепловая энергия . На долю энергии видимого излучения в лучшем случае приходится (10-20) %. Поэтому КПД светодиодов невелик.

Светодиоды применяют в качестве световых индикаторов, а ИК-диоды - в качестве источников излучения в оптоэлектронных устройствах (в частности, в пультах дистанционного управления бытовой техники).

Фотодиод (УГО показано на рисунке 1.19, б ) - полупроводниковый прибор, принцип действия которого основан на использовании внутреннего фотоэффекта - генерации в полупроводнике под действием квантов света (фотонов) свободных носителей заряда .

Фотодиоды используют для преобразования светового (или инфракрасного) излучения в электрический ток (например, в устройствах дистанционного управления бытовых приборов).

Классификация современных полупроводниковых приборов по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, роду исходного полупроводникового материала находит отражение в системе условных обозначений их типов.

Система обозначений современных полупроводниковых диодов установлена отраслевым стандартом ОСТ 11 336.919-81 и базируется на ряде классификационных признаков.

В основу системы обозначений положен семизначный буквенно-цифровой код, первый элемент которого (буква - для приборов широкого применения, цифра - для приборов, используемых в устройствах специального назначения) обозначает исходный полупроводниковый материал, на основе которого изготовлен прибор. Второй элемент обозначения - буква, определяет подкласс приборов, третий элемент - цифра (или буква для оптопар), определяет основные функциональные возможности прибора. Четвертый элемент - двухзначное число, обозначающее порядковый номер разработки технологического типа прибора, пятый элемент - буква, условно определяет классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

Например :

КД102А (2Д102А) - кремниевый выпрямительный диод со средним выпрямленным током менее 0,3 А (согласно справочнику - не более 100 мА), номер разработки 2, группа А;

АЛ103Б (3Л103Б) - арсенид-галлиевый излучающий диод ИК-диапазона, номер разработки 3, группа Б;

КС156А (2С156А) - кремниевый стабилитрон мощностью не более 0,3 Вт с напряжением стабилизации 5,6 В (номер разработки 56), группа А.

Математическая модель диода

При анализе схем электронных устройств на ЭВМ все элементы схем, в том числе и диоды, заменяются их математическими моделями. Математическая модель диода - это совокупность математических выражений, описывающих токи и напряжения в эквивалентной схеме (схеме замещения) диода. В качестве схемы замещения диода можно использовать электрическую модель Эберса - Молла для одиночного электронно-дырочного перехода, показанную на рисунке 1.20.

Рисунок 1.20 - Схема замещения полупроводникового диода

Постоянное сопротивление R д включено в схему с целью учета тока утечки. Емкость С д представляет сумму барьерной и диффузионной емкостей перехода, r - объемное сопротивление тела базы, зависящее от геометрических размеров и степени легирования полупроводника. Управляемый напряжением на переходе и п источник тока I д моделирует статическую ВАХ диода.

Ток управляемого источника тока подчиняется закону :

где I Т - ток насыщения (обратный ток) р -п -перехода;

А и М - эмпирические коэффициенты;

Т - абсолютная температура.

Числовые значения коэффициентов А и М , как правило, находят экспериментально. С этой целью можно воспользоваться ВАХ диодов, приводимыми в справочной литературе либо снятыми экспериментально. Для каждого типа диода, взависимости от его основных характеристик, технологии изготовления и т. д., эти коэффициенты будут различными.

Предложенная модель хорошо аппроксимирует ВАХ диода, кроме той области, где наступает электрический пробой (рисунок 1.21). Но, как правило, режим пробоя для большинства диодов (кроме стабилитронов) является нерабочим режимом.

Рисунок 1.21 - Аппроксимация ВАХ диода

Электрическая схема замещения диода, представленная на рисунке 1.20, в общем случае является неполной. В электрической модели (а, следовательно, и при составлении математической модели) дискретного диода необходимо также учесть наличие индуктивностей выводов L 1 и L 2 , емкости корпуса С п и контактов С к (рисунок 1.22). Такая модель называется глобальной моделью дискретного диода.

Рисунок 1.22 - Глобальная модель диода

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-п переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, другая – дырочную.

Реально электронно-дырочный переход нельзя создать простым соприкосновением пластин n и p-типа, так как при этом неизбежен промежуточный слой воздуха, окислов или поверхностных загрязнений, невозможно идеальное совпадение кристаллических решеток и т.д. Эти переходы получают вплавлением или диффузией соответствующих примесей в пластинки монокристалла полупроводника, или путем выращивания р-n перехода из расплава полупроводника с регулируемым количеством примесей и т.п. В зависимости от способа изготовления р-n переходы бывают сплавными, диффузионными и др. Однако, для упрощения анализа процесса формирования перехода будем считать, что изначально взяли и механически соединили два примесных полупроводниковых кристалла с проводимостью разного типа (n и р типа) с одинаковой концентрацией донорных и акцепторных примесей и с идеальной поверхностью и кристаллической решеткой. Рассмотрим явления, возникающие на их границе.

Рисунок 1.3. Образование р-п перехода

Вследствие того, что концентрация электронов в n области выше, чем в р-области, а концентрация дырок в р-области выше, чем в n области, на границе этих областей существует градиент концентраций носителей, вызывающий диффузионный ток электронов из n области в p область и диффузионный ток дырок из p области в n область. Кроме тока, обусловленного движением основных носителей заряда, через границу раздела полупроводников возможен ток неосновных носителей (электронов из р области в n область и дырок из n области в p-область). Однако, они незначительны (вследствие существенного различия в концентрациях основных и неосновных носителей) и мы их не будем учитывать.

Если бы электроны и дырки были нейтральными, то диффузия в конечном итоге привела к полному выравниванию их концентрации по всему объему кристалла. На самом же деле процессу диффузии препятствует электрическое поле, возникающее в приконтактной области. Уход электронов из приконтактной n области приводит к тому, что их концентрация здесь уменьшается и возникает нескомпенсированный положительный заряд ионов донорной примеси. Точно так же в р области вследствие ухода дырок их концентрация в приконтактном слое снижается и здесь возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Ионы же «уйти» со своих мест не могут, т.к их удерживают сильнейшие силы (связи) кристаллической решетки. Таким образом, на границе областей n и p типа образуются два слоя противоположных по знаку зарядов. Возникает электрическое поле, направленное от положительно заряженных ионов доноров к отрицательно заряженным ионам акцепторов. Область, образовавшихся пространственных зарядов и электрическое поле собственно и представляет собой р-n переход. Его ширина имеет порядок от сотых долей до единиц микрометров, что является значительным размером по сравнению с размерами кристаллической решетки.

Таким образом, на границе р-n перехода образуется контактная разность потенциалов, численно характеризующаяся высотой потенциального барьера ( рисунка 1.3), который основным носителям каждой области необходимо преодолеть, чтобы попасть в другую область. Контактная разность потенциалов имеет порядок десятых долей вольт.

Поле р-п перехода является тормозящим для основных носителей заряда и ускоряющим для неосновных. Любой электрон, проходящий из электронной области в дырочную, попадает в электрическое поле, стремящееся возвратить его обратно в электронную область. Точно так же и дырки, попадая из области р в электрическое поле р-n перехода, будут возвращены этим полем обратно в p-область. Аналогичным образом поле воздействует на заряды, образовавшиеся в силу тех или иных причин внутри р-n перехода. В результате воздействия поля на носители заряда область р-п перехода оказывается обедненной, а ее проводимость – близкой к собственной проводимости исходного полупроводника.

Наличие собственного электрического поля определяет и прохождение тока при приложении внешнего источника напряжения – величина тока оказываются различными в зависимости от полярности приложенного напряжения. Если внешнее напряжение противоположно по знаку контактной разности потенциалов, то это приводит к снижению высоты потенциального барьера. Поэтому ширина р-n перехода уменьшится (рисунок 1.3, б). Улучшаются условия для токопрохождения: уменьшившийся потенциальный барьер смогут преодолеть основные носители, имеющие наибольшую энергию. При увеличении внешнего напряжения ток через р-п переход будет нарастать. Такая полярность внешнего напряжения и ток называются прямыми.

Нетрудно заметить, что преодолевшие потенциальный барьер носители заряда попадают в область полупроводника, для которой они являются неосновными. Они диффундируют в глубь соответствующей области полупроводника, рекомбинируя с основными носителями этой области. Так, по мере проникновения дырок из р-области в n область они рекомбинируют с электронами. Аналогичные процессы происходят и с электронами инжектированными в р-область.

Процесс введения носителей заряда через электронно-дырочный переход при понижении высоты потенциального барьера в область полупроводника, где эти носители заряда являются неосновными, называется инжекцией (от английского слова inject – впрыскивать, вводить).

Если поменять полярность внешнего напряжения (приложить обратное внешнее напряжение), то электрическое поле, создаваемое источником, совпадает c полем р-n перехода. Потенциальный барьер между р и n областями возрастает на величину внешнего напряжения. Количество основных носителей, способных преодолеть действие результирующего поля, уменьшается. Основные носители 6удут оттягиваться от приграничных слоев в глубь полупроводника. Ширина р-n перехода увеличивается (эффект Эрли, рисунок 1.3, в).

Для неосновных носителей (дырок в n области и электронов в р-области) потенциальный барьер в электронно-дырочном переходе отсутствует и они будут втягиваться полем в области р-n перехода. Это явление называется экстракцией. Током неосновных носителей, а также носителей, возникших в области р-п перехода, и будет определяться обратный ток через р-п переход. Величина обратного тока практически не зависит от внешнего обратного напряжения. Это можно объяснить тем, что в единицу времени количество генерируемых пар электрон–дырка при неизменной температуре остается неизменным.

Проведенный анализ позволяет рассматривать р-п переход как нелинейный элемент, сопротивление которого изменяется в зависимости от величины в полярности приложенного напряжения. При увеличении прямого напряжения сопротивление р-n перехода уменьшается. С изменением полярности и величины приложенного напряжения сопротивления р-n перехода резко возрастает. Следовательно, прямая (линейная) зависимость между напряжением и током (закон Ома) для р-n переходов не соблюдается.

Как видно из рисунка 1.3, р-п переход представляет собой двойной слой противоположных по знаку неподвижных объемных зарядов. Его можно уподобить обкладкам плоского конденсатора, обкладками которого являются р - и п-области, а диэлектриком служит р-п переход, практически не имеющий подвижных зарядов. Величина образовавшейся, так называемой, барьерной (зарядной) емкости обратно пропорциональна расстоянию между обкладками. При повышении запирающего напряжения, приложенного к переходу, увеличивается область, обедненная подвижными носителями заряда – электронами или дырками, что соответствует увеличению расстояния между обкладками конденсатора и уменьшению величины емкости. Следовательно, p-n переход можно использовать как емкость, управляемую величиной обратного напряжения. Значение барьерной емкости колеблется от десятков до сотен пикофарад; изменение этой емкости при изменении напряжения может достигать десятикратной величины

При прохождении через переход прямого тока по обе стороны от границы раздела областей накапливается избыточный заряд неосновных носителей противоположного знака, которые не могут мгновенно рекомбинировать. Он формируют емкость, которая получила наименование диффузионной. Диффузная емкость включена параллельно барьерной. Значения диффузионной емкости могут иметь порядок от сотен до тысяч пикофарад. Поэтому при прямом напряжений емкость р-п-перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении – барьерной емкостью.

При прямом напряжении диффузионная емкость не оказывает существенного влияния на работу p-n перехода, так как она всегда зашунтирована малым прямым сопротивлением перехода. Ее негативное влияние проявляется при быстрых переключениях р-п перехода из открытого состояния в закрытое.

p-n (пэ-эн) переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому, такой переход ещё называют электронно — дырочным переходом.

Всего есть два типа полупроводников это p и n типа. В n — типе основными носителями заряда являются электроны , а в p — типе основными — положительно заряженные дырки. Положительная дырка возникает после отрыва электрона от атома и на месте него образуется положительная дырка.

Что бы разобраться как работает p-n переход надо изучить его составляющие то есть полупроводник p — типа и n — типа.

Полупроводники p и n типа изго­тавливаются на основе монокристаллического кремния, имеющего очень высокую степень чистоты, поэтому малейшие примеси (менее 0,001%) су­щественным образом изменяют его электрофизические свойства.

В полупроводнике n типа основными носителями заряда являются электроны . Для получения их используютдонорные примеси, которые вводятся в кремний, — фосфор, сурьма, мышьяк.

В полупроводнике p типа основными носителями заряда являются положительно заряженные дырки . Для получения их используют акцепторные примеси алюминий, бор.

Полупроводник n — типа (электронной проводимости)

Примесный атом фосфора обычно замещает основной атом в узлах кри­сталлической решетки. При этом четыре валентных электрона атома фосфора вступают в связь с четырьмя валентными электронами соседних четырех атомов кремния, образуя устойчивую оболочку из восьми электронов. Пятый валентный электрон атома фосфора оказывается слабо связанным со своим атомом и под действием внешних сил (тепловые колебания решетки, внешнее электрическое поле) легко становится свободным, создавая повышенную концентрацию свободных электронов . Кристалл приобретает электронную проводимость или проводимость n-типа . При этом атом фосфора, лишенный электрона, жестко связан с кристаллической решеткой кремния положи­тельным зарядом, а электрон является подвижным отрицательным зарядом. При отсутствии действия внешних сил они компенсируют друг друга, т. е. в кремнии n-типа количество свободных электронов проводимости опреде­ляется количеством введенных донорных атомов примеси.

Полупроводник p — типа (дырочной проводимости)

Атом алюминия, имеющий только три валентных электрона, не может самостоятельно создать устойчивую восьмиэлектронную оболочку с соседними атомами кремния, так как для этого ему необходим еще один электрон, который он отбирает у одного из атомов кремния, находящегося поблизости. Атом кремния, лишенный электрона, имеет положительный заряд и, так как он может захватить электрон соседнего атома кремния, его можно считать подвижным положительным зарядом, не связанным с кристаллической решеткой, называемым дыркой. Атом алюминия, захвативший электрон, становится отрицательно заряженным центром, жестко связанным с кристал­лической решеткой. Электропроводность такого полупроводника обусловлена движением дырок , поэтому он называется дырочным полупроводни­ком р-типа . Концентрация дырок соответствует количеству введенных атомов акцепторной примеси.

Электронно-дырочный переход

p - n -перехо́д (n - negative - отрицательный, электронный, p - positive - положительный, дырочный), или электронно-дырочный переход - разновидность гомопереходов , область полупроводника , в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p .

Электронно-дырочный переход может быть создан различными путями:

  1. в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (n -область), а в другой - акцепторной (p -область);
  2. на границе двух различных полупроводников с разными типами проводимости.

Если p - n -переход получают вплавлением примесей в монокристаллический полупроводник, то переход от n - к р -области происходит скачком (резкий переход). Если используется диффузия примесей, то образуется плавный переход.

Энергетическая диаграмма p - n -перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении

При контакте двух областей n - и p - типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p -области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n -области - нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда (ОПЗ), состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле , направленное от n -области к p -области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт - устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n - и p -областями при этом существует разность потенциалов , называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p -области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p -области, то потенциальный барьер понижается (прямое смещение), а ОПЗ сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p - n -переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p - и n -областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.

Приложение отрицательного потенциала к p -области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p - n -переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p - n -переход течёт ток I s (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p - n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 10 5 - 10 6 раз. Благодаря этому p - n -переход может использоваться для выпрямления переменных токов (диод).

Вольт-амперная характеристика

Чтобы вывести зависимость величины тока через p - n -переход от внешнего смещающего напряжения V , мы должны рассмотреть отдельно электронные и дырочные токи . В дальнейшем будем обозначать символом J плотность потока частиц, а символом j - плотность электрического тока ; тогда j e = −eJ e , j h = eJ h .

Вольт-амперная характеристика p - n -перехода. I s - ток насыщения, U пр - напряжение пробоя.

При V = 0 как J e , так и J h обращаются в нуль. Это означает, конечно, не отсутствие движения отдельных носителей через переход, а только то, что в обоих направлениях движутся равные количества электронов (или дырок). При V ≠ 0 баланс нарушается. Рассмотрим, например, дырочный ток через обеднённый слой. Он включает следующие две компоненты:

  1. Ток генерации n -области в p -область перехода. Как видно из названия, этот ток обусловлен дырками, генерируемыми непосредственно в n -области обеднённого слоя при тепловом возбуждении электронов с уровней валентной зоны. Хотя концентрация таких дырок (неосновных носителей) в n -области чрезвычайно мала по сравнению с концентрацией электронов (основных носителей), они играют важную роль в переносе тока через переход. Это происходит потому, что каждая дырка, попадающая в обеднённый слой, тут же перебрасывается в p -область под действием сильного электрического поля, которое имеется внутри слоя. В результате величина возникающего тока генерации не зависит от значения изменения потенциала в обеднённом слое, поскольку любая дырка, оказавшаяся в слое, перебрасывается из n -области в p -область.
  2. Ток рекомбинации , то есть дырочный ток, текущий из p -области в n -область. Электрическое поле в обеднённом слое препятствует этому току, и только те дырки, которые попадают на границу обеднённого слоя, имея достаточную кинетическую энергию , чтобы преодолеть потенциальный барьер, вносят вклад в ток рекомбинации. Число таких дырок пропорционально e −eΔФ/kT и, следовательно,

В отличие от тока генерации, ток рекомбинации чрезвычайно чувствителен к величине приложенного напряжения V . Мы можем сравнить величины этих двух токов, заметив, что при V = 0 суммарный ток через переход отсутствует: J h rec (V = 0) = J h gen Из этого следует, что J h rec = J h gen e eV/kT . Полный дырочный ток, текущий из p -области в n -область, представляет собой разность между токами рекомбинации и генерации:

J h = J h rec − J h gen = J h gen (e eV/kT − 1).

Аналогичное рассмотрение применимо к компонентам электронного тока с тем только изменением, что токи генерации и рекомбинации электронов направлены противоположно соответствующим дырочным токам. Поскольку электроны имеют противоположный заряд, электрические токи генерации и рекомбинации электронов совпадают по направлению с электрическими токами генерации и рекомбинации дырок. Поэтому полная плотность электрического тока есть j = e (J h gen + J e gen )(e eV/kT − 1).

Ёмкость p - n -перехода и частотные характеристики

p - n -переход можно рассматривать как плоский конденсатор , обкладками которого служат области n - и p -типа вне перехода, а изолятором является область объемного заряда, обеднённая носителями заряда и имеющая большое сопротивление. Такая ёмкость называется барьерной . Она зависит от внешнего приложенного напряжения, поскольку внешнее напряжение меняет пространственный заряд. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между n - и p -областями полупроводника, и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды неподвижны и связаны с ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением электрической ёмкости перехода. В зависимости от площади перехода, концентрации легирующей примеси и обратного напряжения барьерная емкость может принимать значения от единиц до сотен пикофарад . Барьерная ёмкость проявляется при обратном напряжении; при прямом напряжении она шунтируется малым сопротивлением p - n -перехода. За счёт барьерной ёмкости работают варикапы .

Кроме барьерной ёмкости p - n -переход обладает так называемой диффузионной ёмкостью . Диффузионная ёмкость связана с процессами накопления и рассасывания неравновесного заряда в базе и характеризует инерционность движения неравновесных зарядов в области базы. Диффузионная ёмкость обусловлена тем, что увеличение напряжения на p - n -переходе приводит к увеличению концентрации основных и неосновных носителей, то есть к изменению заряда. Величина диффузионной ёмкости пропорциональна току через p - n -переход. При подаче прямого смещения значение диффузионной ёмкости может достигать десятков тысяч пикофарад.

Эквивалентная схема p - n -перехода. C б - барьерная ёмкость, C д - диффузионная ёмкость, R a - дифференциальное сопротивление p - n -перехода, r - объёмное сопротивление базы.

Суммарная ёмкость p - n -перехода определяется суммой барьерной и диффузионной ёмкостей. Эквивалентная схема p - n -перехода на переменном токе представлена на рисунке. На эквивалентной схеме параллельно дифференциальному сопротивлению p - n -перехода R а включены диффузионная ёмкость C д и барьерная ёмкость С б; последовательно с ними включено объёмное сопротивление базы r . С ростом частоты переменного напряжения, поданного на p - n -переход, емкостные свойства проявляются все сильнее, R а шунтируется ёмкостным сопротивлением, и общее сопротивление p - n -перехода определяется объёмным сопротивлением базы. Таким образом, на высоких частотах p - n -переход теряет свои линейные свойства.

Вставьте, пожалуйста формулы для зависимости C б от напряжения и C 0 .

Пробой p - n -перехода

Пробой диода - это явление резкого увеличения обратного тока через диод при достижении обратным напряжением некоторого критического для данного диода значения. В зависимости от физических явлений, приводящих к пробою, различают лавинный, туннельный, поверхностный и тепловой пробои.

  • Лавинный пробой (ударная ионизация) является наиболее важным механизмом пробоя p - n -перехода. Напряжение лавинного пробоя определяет верхний предел обратного напряжения большинства диодов. Пробой связан с образованием лавины носителей заряда под действием сильного электрического поля, при котором носители приобретают энергии, достаточные для образования новых электронно-дырочных пар в результате ударной ионизации атомов полупроводника.
  • Туннельным пробоем электронно-дырочного перехода называют электрический пробой перехода, вызванный квантовомеханическим туннелированием носителей заряда сквозь запрещённую зону полупроводника без изменения их энергии. Туннелирование электронов возможно при условии, если ширина потенциального барьера, который необходимо преодолеть электронам, достаточно мала. При одной и той же ширине запрещённой зоны (для одного и того же материала) ширина потенциального барьера определяется напряжённостью электрического поля, то есть наклоном энергетических уровней и зон. Следовательно, условия для туннелирования возникают только при определённой напряжённости электрического поля или при определённом напряжении на электронно-дырочном переходе - при пробивном напряжении. Значение этой критической напряжённости электрического поля составляет примерно 8∙10 5 В/см для кремниевых переходов и 3∙10 5 В/см - для германиевых. Так как вероятность туннелирования очень сильно зависит от напряжённости электрического поля, то внешне туннельный эффект проявляется как пробой диода.
  • Поверхностный пробой (ток утечки) . Реальные p-n -переходы имеют участки, выходящие на поверхность полупроводника. Вследствие возможного загрязнения и наличия поверхостных зарядов между p- и n- областями могут образовываться проводящие плёнки и проводящие каналы, по которым идёт ток утечки I ут. Этот ток увеличивается с ростом обратного напряжения и может превысить тепловой ток I 0 и ток генерации I ген. Ток I ут слабо зависит от температуры. Для уменьшения I ут применяют защитные плёночные покрытия.
  • Тепловой пробой - это пробой, развитие которого обусловлено выделением в выпрямляющем электрическом переходе тепла вследствие прохождения тока через переход. При подаче обратного напряжения практически всё оно падает на p - n -переходе, через который идёт, хотя и небольшой, обратный ток. Выделяющаяся мощность вызывает разогрев p - n -перехода и прилегающих к нему областей полупроводника. При недостаточном теплоотводе эта мощность вызывает дальнейшее увеличение тока, что приводит к пробою. Тепловой пробой, в отличие от предыдущих, необратим.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама