THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

«Турбинная» тема настолько же сложна, насколько и обширна. Поэтому о полном ее раскрытии говорить, конечно, не приходится. Займемся, как всегда, «общим знакомством» и «отдельными интересными моментами»…

При этом история турбины авиационной совсем коротка по сравнению с историей турбины вообще. Значит не обойтись без некоего теоретически-исторического экскурса, содержание которого по большей части к авиации не относится, но является базой для рассказа об использования газовой турбины в авиационных двигателях.

Про гул и грохот…

Начнем несколько нетрадиционно и вспомним о « ». Это довольно распространенное словосочетание, используемое обычно неискушенными авторами в СМИ при описании работы мощной авиационной техники. Сюда же можно присоединить «грохот, свист» и прочие громкие определения для все тех же «самолетных турбин».

Достаточно привычные слова для многих. Однако, людям понимающим хорошо известно, что на самом деле все эти «звуковые» эпитеты чаще всего характеризуют работу реактивных двигателей в целом или его частей, имеющих к турбинам, как таковым, крайне малое отношение (за исключением, конечно, взаимовлияния при их совместной работе в общем цикле ТРД).

Более того, в турбореактивном двигателе (как раз такие являются объектом восторженных отзывов), как двигателе прямой реакции, создающем тягу путем использования реакции газовой струи, турбина всего лишь его часть и к «грохочущего реву» имеет скорее косвенное отношение.

А на тех двигателях, где она, как узел, играет, в некотором роде, главенствующую роль (это двигатели непрямой реакции, и они не зря зовутся газотурбинными ), уже нет столь впечатляющего звука, или он создается совсем иными частями силовой установки летательного аппарата, например, воздушным винтом.

То есть ни гул, ни грохот, как таковые, к авиационной турбине на самом деле не относятся. Однако, несмотря на такую звуковую неэффектность, она является сложным и очень важным агрегатом современного ТРД (ГТД), зачастую определяющим его главные эксплуатационные характеристики. Ни один ГТД без турбины просто по определению обойтись не может.

Поэтому и разговор, конечно, не о впечатляющих звуках и некорректном использовании определений русского языка, а об интересном агрегате и его отношении к авиации, хотя это и далеко не единственная область его применения. Как техническое устройство турбина появилась задолго до возникновения самого понятия «летательный аппарат» (или аэроплан) и уж тем более газотурбинного двигателя для него.

История + немного теории…

И даже очень задолго. С тех самых пор, когда были изобретены механизмы, преобразующие энергию сил природы в полезное действие. Наиболее простыми в этом плане и поэтому одними из первых появившихся стали так называемые ротационные двигатели.

Само это определение, конечно, появилось только в наши дни. Однако, смысл его как раз и определяет простоту двигателя. Природная энергия непосредственно, без каких-либо промежуточных устройств превращается в механическую мощность вращательного движения основного силового элемента такого двигателя – вала.

Турбина – типичный представитель ротационного двигателя. Забегая вперед, можно сказать, что, например, в поршневом двигателе внутреннего сгорания (ДВС) основной элемент – это поршень. Он совершает возвратно-поступательное движение, и для получения вращения выходного вала нужно иметь дополнительный кривошипно-шатунный механизм, что, естественно, усложняет и утяжеляет конструкцию. Турбина в этом плане значительно выгодней.

Для ДВС ротационного типа, как теплового двигателя, коим, кстати, является и двигатель турбореактивный, употребляется обычно название «роторный ».

Турбинное колесо водяной мельницы

Одними из самых известных и самых древних применений турбины являются большие механические мельницы, используемые человеком с незапамятных времен для различных хозяйственных нужд (не только для помола зерна). К ним относятся как водяные , так и ветряные механизмы.

На протяжении длительного периода древней истории (первые упоминания примерно со 2-го века до н.э.) и истории средних веков это были фактически единственные механизмы, используемые человеком для практических целей. Возможность их применения при всей примитивности технических обстоятельств заключалась в простоте трансформации энергии используемого рабочего тела (воды, воздуха).

Ветряная мельница - пример турбинного колеса.

В этих, по сути дела, настоящих ротационных двигателях энергия водяного или воздушного потока превращается в мощность на валу и, в конечном итоге, полезную работу. Происходит это при взаимодействии потока с рабочими же поверхностями, коими являются лопатки водяного колеса или крылья ветряной мельницы . И то и другое, по сути дела – прообраз лопаток современных лопаточных машин , которыми и являются используемые ныне турбины (и компрессоры, кстати, тоже).

Известен еще один тип турбины, впервые документально упомянутый (по-видимому и изобретенный) древнегреческим ученым, механиком, математиком и естествоиспытателем Героном Александрийским (Heron ho Alexandreus, 1 -ый век н.э.) в его трактате «Пневматика». Описанное им изобретение получило название эолипил , что в переводе с греческого означает «шар Эола» (бог ветра, Αἴολος – Эол (греч.), pila – шар (лат.)).

Эолипил Герона.

В нем шар был снабжен двумя противоположно направленными трубками-соплами. Из сопел выходил пар, поступавший в шар по трубам из расположенного ниже котла и заставлявший тем самым шар вращаться. Действие понятно из приведенного рисунка. Это была так называемая обращенная турбина, вращающаяся в сторону, обратную стороне выхода пара. Турбины такого типа имеют специальное название – реактивные (подробнее – ниже).

Интересно, что сам Герон вряд ли представлял себе, что является рабочим телом в его машине. В ту эпоху пар отождествляли с воздухом, об этом свидетельствует даже название, ведь Эол повелевает ветром, то есть воздухом.

Эолипил представлял из себя, в общем-то, полноценную тепловую машину , превращавшую энергию сжигаемого топлива в механическую энергию вращения на валу. Возможно это была одна из первых в истории тепловых машин. Правда полноценность ее была все же «не полной», так как полезной работы изобретение не совершало.

Эолипил в числе других известных в то время механизмов входил в комплект так называемого «театра автоматов», имевшего большую популярность в последующие века, и был фактически просто интересной игрушкой с непонятным будущим.

От момента его создания и вообще от той эпохи, когда люди в своих первых механизмах использовали только «явно проявляющие себя» силы природы (сила ветра или сила тяжести падающей воды) до начала уверенного использования тепловой энергии топлива во вновь созданных тепловых машинах прошла не одна сотня лет.

Первыми такими агрегатами стали паровые машины . Настоящие действующие экземпляры были изобретены и построены в Англии только к концу 17-го века и использовались для откачки воды из угольных копей. Позже появились паровые машины с поршневым механизмом.

В дальнейшем, по мере развития технических знаний, «на сцену вышли» поршневые двигатели внутреннего сгорания различных конструкций, более совершенные и обладающие более высоким КПД механизмы. Они уже использовали в качестве рабочего тела газ (продукты сгорания) и не требовали для его подогрева громоздких паровых котлов.

Турбины в качестве главных узлов тепловых машин, также прошли в своем развитии похожий путь. И хотя отдельные упоминания о некоторых экземплярах имеются в истории, но заслуживающие внимания и к тому же документально отмеченные, в том числе и запатентованные, агрегаты появились только во второй половине 19-го века.

Началось все с пара…

Именно с использованием этого рабочего тела были отработаны практически все базовые принципы устройства турбины (в дальнейшем и газовой), как важной части тепловой машины.

Реактивная турбина, запатентованная Лавалем.

Достаточно характерными в этом плане стали разработки талантливого шведского инженера и изобретателя Густава де Лаваля (Karl Gustaf Patrik de Laval). Его тогдашние исследования были связаны с идеей разработки нового молочного сепаратора с повышенными оборотами привода, что позволяло значительно повысить производительность.

Получить большую частоту вращения (обороты) путем использования уже традиционного тогда (впрочем и единственно существовавшего) поршневого парового двигателя не представлялось возможным из-за большой инерционности самого главного элемента – поршня. Понимая это, Лаваль решил попробовать отказаться от использования поршня.

Рассказывают, что сама идея возникла у него при наблюдении за работой пескоструйных аппаратов. В 1883 году он получил свой первый патент (английский патент №1622) в этой области. Запатентованное устройство носило название «Турбина, работающая паром и водой ».

Оно представляло из себя S-образную трубку, на концах которой были выполнены сужающиеся сопла. Трубка была насажена на полый вал, через который к соплам подавался пар. Принципиально все это ничем не отличалось от эолипила Герона Александрийского.

Изготовленное устройство работало достаточно надежно с большими для техники того времени оборотами – 42000 об/мин. Скорость вращения достигала 200 м/с. Но при столь хороших параметрах турбина обладала чрезвычайно низким КПД . И попытки его увеличения при существовавшем уровне техники ни к чему не привели. Почему же так получилось?

——————-

Немного теории… Чуть подробней об особенностях….

Упомянутый КПД (для современных авиационных турбин это так называемый мощностной или эффективный КПД) характеризует эффективность использования затраченной энергии (располагаемой) для приведения в движение вала турбины. То есть какая часть этой энергии была потрачена полезно на вращение вала, а какая «вылетела в трубу ».

Именно вылетела. Для описанного типа турбины, называемого реактивным , это выражение как раз подходит. Такое устройство получает вращательное движение на валу под действием силы реакции выходящей струи газа (или в данном случае пара).

Турбина, как динамическая расширительная машина, в отличие от объемных машин (поршневых) требует для своей работы не только сжатия и нагрева рабочего тела (газа, пара), но и его разгона. Здесь расширение (увеличение удельного объема) и падение давления происходит вследствие разгона, в частности в сопле. В поршневом двигателе это имеет место из-за увеличения объема камеры цилиндра.

В итоге, та большая потенциальная энергия рабочего тела, которая образовалась в результате подвода к нему тепловой энергии сгоревшего топлива, превращается в кинетическую (минус различные потери, конечно). А кинетическая (в реактивной турбине) посредством сил реакции – в механическую работу на валу.

И вот о том, насколько полно кинетическая энергия переходит в механическую в данной ситуации и говорит нам КПД. Чем он выше, тем меньшей кинетической энергией обладает поток, выходящий из сопла в окружающую среду. Эта оставшаяся энергия называется «потерями с выходной скоростью », и она прямо пропорциональна квадрату скорости выходящего потока (все наверняка помнят mС 2 /2).

Принцип работы реактивной турбины.

Здесь речь идет о так называемой абсолютной скорости С. Ведь выходящий поток, точнее говоря каждая его частица, участвует в сложном движении: прямолинейное плюс вращательное. Таким образом, абсолютная скорость С (относительно неподвижной системы координат) равна сумме скорости вращения турбины U и относительной скорости потока W (скорость относительно сопла). Сумма конечно векторная, показана на рисунке.

Сегнерово колесо.

Минимальные потери (и максимальный КПД) соответствуют минимальной скорости С, в идеале, она должна быть равна нулю. А это возможно только в случае равенства W и U (видно из рисунка). Окружная скорость (U) в этом случае называется оптимальной .

Такое равенство несложно было бы обеспечить на гидравлических турбинах (типа сегнерова колеса ), так как скорость истечения жидкости из сопел для них (аналогичная скорости W) относительно невелика.

Но эта же самая скорость W для газа или пара из-за большой разницы плотностей жидкости и газа значительно больше. Так, при относительно небольшом давлении всего 5 атм. гидравлическая турбина может дать скорость истечения всего 31 м/с, а паровая — 455 м/с. То есть получается, что уже при достаточно низких давлениях (всего-то 5 атм.) реактивная турбина Лаваля должна была из соображений обеспечения высокого КПД иметь окружную скорость выше 450 м/с.

Для тогдашнего уровня развития техники это было просто невозможно. Нельзя было сделать надежную конструкцию с такими параметрами. Уменьшать же оптимальную окружную скорость путем уменьшения относительной (W) тоже смысла не имело, так как это можно сделать лишь уменьшая температуру и давление, а значит и общую эффективность.

Активная турбина Лаваля…

Дальнейшему совершенствованию реактивная турбина Лаваля не поддавалась. Несмотря на предпринятые попытки, дела зашли в тупик. Тогда инженер пошел по другому пути. В 1889 году им была запатентована турбина другого типа, получившая впоследствии название активной . За рубежом (в английском) она сейчас носит название impulse turbine , то есть импульсная.

Заявленное в патенте устройство состояло из одного или нескольких неподвижных сопел, подводящих пар к ковшеобразным лопаткам, укрепленным на ободе подвижного рабочего турбинного колеса (или диска).

Активная одноступенчатая паровая турбина, запатентованная Лавалем.

Рабочий процесс в такой турбине имеет следующий вид. Пар разгоняется в соплах с ростом кинетической энергии и падением давления и попадает на рабочие лопатки, на их вогнутую часть. В результате воздействия на лопатки рабочего колеса оно начинает вращаться. Или еще можно сказать, что вращение возникает из-за импульсного воздействия струи. Отсюда и английское название impulse turbine.

При этом в межлопаточных каналах, имеющих практически постоянное поперечное сечение, поток свою скорость (W) и давление не меняет, но меняет направление, то есть разворачивается на большие углы (вплоть до 180°). То есть имеем при выходе из сопла и на входе в межлопаточный канал: абсолютная скорость С 1 , относительная W 1 , окружная скорость U.

На выходе соответственно С 2 , W 2 , и такая же U. При этом W 1 = W 2 , С 2 < С 1 – из-за того, что часть кинетической энергии входящего потока превращается в механическую на валу турбины (импульсное воздействие) и абсолютная скорость падает.

Принципиально этот процесс показан на упрощенном рисунке. Также для упрощения объяснения процесса здесь принято, что вектора абсолютных и окружных скоростей практически параллельны, поток меняет направление в рабочем колесе на 180°.

Течение пара (газа) в ступени активной турбины.

Если рассматривать скорости в абсолютных величинах, то видно, что W 1 = С 1 – U, а C 2 = W 2 — U. Таким образом, исходя из сказанного, для оптимального режима, когда КПД принимает максимальные значения, и потери с выходной скорости стремятся к минимуму (то есть С 2 =0) имеем С 1 =2U или U=C 1 /2.

Получаем, что для активной турбины оптимальная окружная скорость вдвое меньше скорости истечения из сопла, то есть такая турбина по сравнению с реактивной вдвое менее нагружена и задача получения более высокого КПД облегчается.

Поэтому в дальнейшем Лаваль продолжал развивать именно такой тип турбины. Однако, несмотря на снижение требуемой окружной скорости, она все же оставалась достаточно большой, что повлекло за собой столь же большие центробежные и вибрационные нагрузки.

Принцип работы активной турбины.

Следствием этого стали конструктивные и прочностные проблемы, а также проблемы устранения дисбаланса, решаемые часто с большим трудом. Кроме того оставались и другие нерешенные и нерешаемые в тогдашних условиях факторы, в итоге снизившие КПД этой турбины.

К ним относились, например, несовершенство аэродинамики лопаток, вызывающее увеличенные гидравлические потери , а так же пульсационное воздействие отдельных струй пара. Фактически активными лопатками, воспринимающими действие этих струй (или струи) одномоментно могли быть только несколько или даже одна лопатка. Остальные при этом двигались вхолостую, создавая дополнительное сопротивление (в паровой атмосфере).

У такой турбины не было возможностей к увеличению мощности за счет роста температуры и давления пара, так как это привело бы к росту окружной скорости, что было абсолютно неприемлемо из-за все тех же конструктивных проблем.

Кроме того, рост мощности (с ростом окружной скорости) был нецелесообразен еще и по другой причине. Потребителями энергии турбины были малооборотистые по сравнению с ней устройства (планировались к этому электрогенераторы). Поэтому Лавалю пришлось разрабатывать специальные редукторы для кинематического соединения вала турбины с валом потребителя.

Соотношение масс и размеров активной турбины Лаваля и редуктора к ней.

Из-за большой разницы в оборотах этих валов редукторы были крайне громоздки и по размерам и массе зачастую значительно превосходили саму турбину. Увеличение же ее мощности повлекло бы за собой еще больший рост размеров таких устройств.

В итоге активная турбина Лаваля представляла из себя относительно маломощный агрегат (работающие экземпляры до 350 л.с.), к тому же дорогой (из-за большого комплекса усовершенствований), а в комплекте с редуктором еще и достаточно громоздкий. Все это делало его неконкурентноспособным и исключало массовое применение.

Любопытен факт того, что конструктивный принцип активной турбины Лаваля на самом деле был изобретен не им. Еще за 250 лет до появления его исследований в Риме в 1629 году была опубликована книга итальянского инженера и архитектора Джованни Бранка (Giovanni Branca) под названием «Le Machine » («Машины»).

В ней среди прочих механизмов было помещено описание «парового колеса», содержавшее все основные узлы, построенные Лавалем: паровой котел, трубка для подачи пара (сопло), рабочее колесо активной турбины и даже редуктор. Таким образом задолго до Лаваля все эти элементы уже были известны, и его заслуга заключалась в том, что он заставил их всех вместе реально работать и занимался крайне сложными вопросами совершенствования механизма в целом.

Паровая активная турбина Джованни Бранка.

Интересно, что одной из наиболее известных особенностей его турбины стала конструкция сопла (она отдельно упоминалась в том же патенте), подающего пар на рабочие лопатки. Здесь сопло из обычного сужающегося, как было в реактивной турбине, стало сужающе-расширяющимся . Впоследствии такого типа сопла стали называться соплами Лаваля . Они позволяют разогнать поток газа (пара) до сверхзвука с достаточно малыми потерями. О них .

Таким образом, главной проблемой, с которой боролся Лаваль, разрабатывая свои турбины, и с которой так и не смог справиться, была большая окружная скорость. Однако, достаточно действенное решение этой проблемы было уже предложено и даже, как это ни странно, самим Лавалем.

Многоступенчатость….

В том же году (1889 г.), когда была запатентована вышеописанная активная турбина, инженером была разработана активная турбина с двумя параллельными рядами рабочих лопаток, укрепленных на одном рабочем колесе (диске). Это была так называемая двухступенчатая турбина .

На рабочие лопатки так же, как и в одноступенчатой, через сопло подавался пар. Между двумя рядами рабочих лопаток был установлен ряд лопаток неподвижных, которые перенаправляли поток, выходящий из лопаток первой ступени на рабочие лопатки второй.

Если использовать предложенный выше упрощенный принцип определения окружной скорости для одноступенчатой реактивной турбины (Лаваля), то выяснится, что для двухступенчатой турбины скорость вращения меньше скорости истечения из сопла уже не в два, а в четыре раза.

Принцип колеса Кертиса и изменение параметров в нем.

Это и есть то самое действенное решение проблемы низкой оптимальной окружной скорости, которое предложил, но не использовал Лаваль и которое активно применяется в современных турбинах, как паровых, так и газовых. Многоступенчатость…

Она означает, что большая располагаемая энергия, приходящаяся на всю турбину может быть некоторым образом поделена на части по числу ступеней, и каждая такая часть срабатывается в отдельной ступени. Чем меньше эта энергия, тем меньше скорость рабочего тела (пара, газа) поступающего на рабочие лопатки и, следовательно, меньше оптимальная окружная скорость.

То есть, изменяя количество ступеней турбины, можно изменять частоту вращения ее вала и, соответственно, менять нагрузку на него. Кроме того многоступенчатость позволяет срабатывать на турбине большие перепады энергии, то есть увеличивать ее мощность, и при этом сохранять высокие показатели КПД.

Лаваль свою двухступенчатую турбину не запатентовал, хотя опытный экземпляр и был изготовлен, поэтому она носит имя американского инженера Ч.Кертиса (колесо (или диск) Кертиса), который в 1896 году получил патент на аналогичное устройство.

Однако, уже гораздо раньше, в 1884 году, английский инженер Чарлз Парсонс (Charles Algernon Parsons) разработал и запатентовал первую настоящую многоступенчатую паровую турбину . Высказываний различных ученых и инженеров по поводу полезности разделения располагаемой энергии по ступеням было много и до него, но он первый воплотил идею в «железо».

Многоступенчатая активно-реактивная турбина Парсонса (разобрана).

При этом его турбина имела особенность, приближавшую ее к современным устройствам. В ней пар расширялся и разгонялся не только в соплах, образованных неподвижными лопатками, но и частично в каналах, образованных специально спрофилированными рабочими лопатками.

Такого типа турбину принято называть реактивной, хотя название это достаточно условно. На самом деле она занимает промежуточное положение между чисто реактивной турбиной Герона-Лаваля и чисто активной Лаваля-Бранка. Рабочие лопатки благодаря своей конструкции совмещают активный и реактивный принципы в общем процессе. Поэтому такую турбину правильней было бы называть активно-реактивной , что часто и делается.

Схема многоступенчатой турбины Парсонса.

Парсонс работал над различными типами многоступенчатых турбин. Среди его конструкций были не только вышеописанные осевые (рабочее тело перемещается вдоль оси вращения), но и радиальные (пар перемещается в радиальном направлении). Достаточно хорошо известна его трехступенчатая чисто активная турбина «Герон», в которой применены так называемые колеса Герона (суть та же, что и у эолипила).

Реактивная турбина "Герон".

В дальнейшем, с начала 1900-х годов паровое турбостроение быстро набирало темпы и Парсонс был в его авангарде. Его многоступенчатыми турбинами оснащались морские суда, сначала опытные (судно «Турбиния», 1896 год, водоизмещение 44 т, скорость 60км/ч – невиданная для того времени), потом военные (пример – броненосец «Дредноут», 18000 т, скорость 40 км/ч, мощность турбоустановки 24700 л.с.) и пассажирские (пример – однотипные «Мавритания» и «Лузитания», 40000 т, скорость 48 км/ч, мощность турбоустановки 70000 л.с.). Одновременно с этим началось и стационарное турбостроение, например путем установки турбин в качестве приводов на электростанциях («Компания Эдисона» в Чикаго).

О газовых турбинах…

Однако, вернемся к нашей основной теме – авиационной и отметим одну достаточно очевидную вещь: столь явно обозначившийся успех в эксплуатации паровых турбин мог иметь для авиации, быстро прогрессирующей своем развитии как раз в то же время, только конструктивно-принципиальное значение.

Применение паровой турбины в качестве силовой установки на летательных аппаратах по понятным причинам было крайне сомнительным. Авиационной турбиной могла стать только принципиально аналогичная, но гораздо более выгодная турбина газовая. Однако, не все было так просто…

По словам Льва Гумилевского, автора популярной в 60-х книги «Создатели двигателей», однажды, в 1902 году, в период начала бурного развития парового турбостроения, Чарлзу Парсонсу, фактически одному из главных тогдашних идеологов этого дела, был задан, в общем-то, шутливый вопрос: «Можно ли «парсонизировать» газовую машину? » (подразумевалась турбина).

Ответ был высказан в абсолютно решительной форме: «Я думаю, что газовую турбину никогда создать не удастся. Об этом не может быть двух мнений .» Пророком инженеру стать не удалось, но основания так говорить у него несомненно были.

Использование газовой турбины , особенно если иметь в виду применение ее в авиации вместо паровой, конечно было соблазнительным, потому что положительные стороны ее очевидны. При всех своих мощностных возможностях она для работы не нуждается в огромных, громоздких устройствах создания пара – котлах и также не менее больших устройствах и системах его охлаждения –конденсаторах, градирнях, прудах охлаждения и т.п.

Нагревателем для газотурбинного двигателя служит небольшая, компактная , расположенная внутри двигателя и сжигающая топливо прямо в потоке воздуха. А холодильника у него просто нет. Или вернее сказать, что он есть, но существует как бы виртуально, потому что отработанный газ отводится в атмосферу, которая и является холодильником. То есть имеется все необходимое для тепловой машины, но при этом все компактно и просто.

Правда, паротурбинная установка тоже может обойтись без «реального холодильника» (без конденсатора) и выпускать пар прямо в атмосферу, но тогда об экономичности можно забыть. Пример тому паровоз – реальный КПД около 6%, 90% энергии у него вылетает в трубу.

Но при таких ощутимых плюсах есть и существенные недостатки, которые, в целом, и стали почвой для категорического ответа Парсонса.

Сжатие рабочего тела для последующего осуществления рабочего цикла в т.ч. и в турбине…

В рабочем цикле паротурбинной установки (цикл Ренкина) работа сжатия воды невелика и требования к осуществляющему эту функцию насосу и его экономичности поэтому также небольшие. В цикле же ГТД, где сжимается воздух, эта работа наоборот очень внушительна, и на нее расходуется больша́я часть располагаемой энергии турбины.

Это уменьшает долю полезной работы, для которой может быть предназначена турбина. Поэтому требования к агрегату сжатия воздуха в плане его эффективности и экономичности очень высоки. Компрессоры в современных авиационных ГТД (в основном осевые) также, как и в стационарных агрегатах наряду с турбинами представляют из себя сложные и дорогие устройства. О них .

Температура…

Это главная беда для газовой турбины, в том числе авиационной. Дело в том, что если в паротурбинной установке температура рабочего тела после процесса расширения близка к температуре охлаждающей воды, то в газовой турбине она достигает величины нескольких сотен градусов.

Это значит, что в атмосферу (как в холодильник) выбрасывается большое количество энергии, что, конечно, отрицательно сказывается на эффективности всего рабочего цикла, который характеризуется термическим КПД : η т = Q 1 – Q 2 / Q 1 . Здесь Q 2 – та самая отводимая в атмосферу энергия. Q 1 – энергия подводимая в процесс от нагревателя (в камере сгорания).

Для того, чтобы этот КПД повысить, нужно увеличить Q 1 , что равносильно увеличению температуры перед турбиной (то есть в камере сгорания). Но в том-то и дело, что поднять эту температуру можно далеко не всегда. Максимальная величина ее лимитируется самой турбиной и главным условием здесь становится прочность. Турбина работает в очень тяжелых условиях, когда высокая температура сочетается с большими центробежными нагрузками.

Именно этот фактор всегда ограничивал мощностные и тяговые возможности газотурбинных двигателей (во многом зависящие от температуры) и часто становился причиной усложнения и удорожания турбин. Такая ситуация сохранилась и в наше время.

А во времена Парсонса ни металлургическая промышленность, ни аэродинамическая наука пока еще не могли обеспечить решение проблем создания эффективного и экономичного компрессора и высокотемпературной турбины. Не было как соответствующей теории, так и необходимых жаропрочных и жаростойких материалов.

И все-таки попытки были…

Тем не менее, как обычно это бывает, нашлись люди, не боящиеся (или может быть не понимающие:-)) возможных трудностей. Попытки создания газовой турбины не прекращались.

Причем интересно, что и сам Парсонс на заре своей «турбинной» деятельности в своем первом патенте на многоступенчатую турбину отметил возможность ее работы кроме пара также и на продуктах сгорания топлива. Там же рассматривался возможный вариант газотурбинного двигателя, работающего на жидком топливе с компрессором, камерой сгорания и турбиной.

Дымовой вертел.

Примеры использования газовых турбин без подведения под это какой-либо теории известны давно. По-видимому, еще Герон в «театре автоматов» использовал принцип воздушной реактивной турбины. Достаточно широко известны так называемые «дымовые вертелы ».

А в уже упомянутой книге итальянца (инженер, архитектор, Giovanni Branca, Le Machine) Джованни Бранка есть рисунок «Oгненного колеса ». В нем турбинное колесо вращается продуктами сгорания от костра (или очага). Интересно, что сам Бранка бо́льшую часть своих машин не строил, а только высказывал идеи их создания.

"Огненное колесо" Джованни Бранка.

Во всех этих «дымовых и огненных колесах» не было стадии сжатия воздуха (газа), и компрессор, как таковой, отсутствовал. Превращение потенциальной энергии, то есть подведенной тепловой энергии сгорания топлива, в кинетическую (разгон) для вращения газовой турбины происходил только за счет действия силы тяжести, когда теплые массы поднимались вверх. То есть использовалось явление конвекции .

Конечно, такие «агрегаты» для реальных машин, например, для привода транспортных средств использованы быть не могли. Однако в 1791 году англичанин Джон Барбер (John Barber) запатентовал «машину для безлошадных перевозок», одним их важнейших узлов которой стала газовая турбина. Это был первый в истории официально зарегистрированный патент на газовую турбину.

Двигатель Джона Барбера с газовой турбиной.

Машина использовала газ, получаемый из древесины, угля или нефти, нагреваемых в специальных газогенераторах (ретортах), который после охлаждения поступал в поршневой компрессор, где сжимался вместе с воздухом. Далее смесь подавалась в камеру сгорания, и после уже продукты сгорания вращали турбину . Для охлаждения камер сгорания использовалась вода, и пар, получавшийся в результате, также направлялся на турбину.

Уровень развития тогдашних технологий не позволил воплотить идею в жизнь. Действующая модель машины Барбера с газовой турбиной была построена только в 1972 году фирмой «Kraftwerk-Union AG» для Ганноверской промышленной выставки.

В течение всего 19-го века развитие концепции газовой турбины по вышеописанным причинам продвигалось крайне медленно. Образцов, заслуживающих внимания было мало. Компрессор и высокая температура оставались непреодолимым камнем преткновения. Были попытки использования вентилятора для сжатия воздуха, а также применения воды и воздуха для охлаждения элементов конструкции.

Двигатель Ф.Штольце. 1 - осевой компрессор, 2 - осевая турбина, 3 - теплообменник.

Известен пример газотурбинного двигателя немецкого инженера Франца Штольце, запатентованный в 1872 году и очень похожего по схеме на современные ГТД. В нем многоступенчатый осевой компрессор и многоступенчатая осевая турбина располагались на одном валу.

Воздух после прохождения регенеративного теплообменника делился на две части. Одна поступала в камеру сгорания, вторая подмешивалась к продуктам сгорания перед поступлением их в турбину, снижая их температуру. Это так называемый вторичный воздух , и его использование – прием, широко применяемый в современный ГТД.

Двигатель Штольце испытывался в 1900-1904 годах, однако оказался крайне неэффективен из-за низкого качества компрессора и невысокой температуры перед турбиной.

Бо́льшую часть первой половины 20-го века газовая турбина так и не смогла активно конкурировать с паровой или стать частью ГТД, который бы смог достойно заменить поршневой ДВС. Применение ее на двигателях было в основном вспомогательным. Например, в качестве агрегатов наддува в поршневых двигателях, в том числе и авиационных.

Но с начала 40-х положение стало быстро меняться. Наконец-то были созданы новые жаропрочные сплавы, позволившие радикально поднять температуру газа перед турбиной (до 800˚С и выше), появились достаточно экономичные с высоким КПД.

Это не только позволило строить эффективные газотурбинные двигатели, но и, благодаря сочетанию их мощности с относительной легкостью и компактностью, применять их на летательных аппаратах. Началась эпоха реактивной авиации и авиационных газотурбинных двигателей.

Турбины в авиационных ГТД…

Итак… Основная область применения турбин в авиации – это ГТД. Турбина здесь совершает тяжелую работу — вращает компрессор. При этом в ГТД, как и во всяком тепловом двигателе, работа расширения больше работы сжатия.

А турбина как раз и есть расширительная машина, и на компрессор она расходует только часть располагаемой энергии газового потока. Оставшаяся часть (иногда ее называют свободной энергией ) может быть использована в полезных целях в зависимости от типа и конструкции двигателя.

Схема ТвАД Мakila 1a1 со свободной турбиной.

Турбовальный двигатель AMAKILA 1A1.

Для двигателей непрямой реакции, таких, как (вертолетный ГТД) она расходуется на вращение воздушного винта. В этом случае турбина чаще всего разделена на две части. Первая – это турбина компрессора . Вторая, приводящая винт,- это так называемая свободная турбина . Она вращается самостоятельно и с турбиной компрессора связана только газодинамически.

В двигателях прямой реакции (реактивные двигатели или ВРД) турбина используется только для привода компрессора. Оставшаяся свободная энергия, которая в ТвАД вращает свободную турбину, срабатывается в сопле, превращаясь в кинетическую энергию для получения реактивной тяги .

Посередине между этими крайностями располагаются . У них часть свободной энергии расходуется для привода воздушного винта, и некоторая часть формирует реактивную тягу в выходном устройстве (сопле). Правда доля ее в общей тяге двигателя невелика.

Схема одновального ТВД DART RDa6. Турбина на общем валу двигателя.

Турбовинтовой одновальный двигатель Rolls-Royce DART RDa6.

По конструкции ТВД могут быть одновальными , в которых свободная турбина не выделена конструктивно и, являясь одним агрегатом, приводит сразу и компрессор и воздушный винт. Пример ТВД Rolls-Royce DART RDa6, а также наш известный ТВД АИ-20.

Могут быть также ТВД с отдельной свободной турбиной, приводящей винт и механически не связанной с остальными узлами двигателя (газодинамическая связь). Пример – двигатель PW127 различных модификаций (самолеты ), или ТВД Pratt & Whitney Canada PT6A.

Схема ТВД Pratt & Whitney Canada PT6A сосвободной турбиной.

Двигатель Pratt & Whitney Canada PT6A .

Схема ТВД PW127 со свободной турбиной.

Конечно же, во всех типах ГТД к полезной нагрузке относятся и агрегаты, обеспечивающие работу двигателя и самолетных систем. Это обычно насосы, топливные и гидро-, электрогенераторы и т.п. Все эти устройства приводятся чаще всего от вала турбокомпрессора.

О типах турбин.

Типов на самом деле немало. Только для примера некоторые названия: осевые, радиальные, диагональные, радиально-осевые, поворотно-лопастные и др. В авиации используются только первые две, причем радиальная – достаточно редко. Обе эти турбины получили названия в соответствии с характером движения газового потока в них.

Радиальная.

В радиальной он течет по радиусу. Причем в радиальной авиационной турбине используется центростремительное направление потока, обеспечивающее более высокий КПД (в неавиационной практике есть и центробежное).

Ступень радиальной турбины состоит из рабочего колеса и неподвижных лопаток, формирующих поток на входе в него. Лопатки спрофилированы так, чтобы межлопаточные каналы имели сужающуюся конфигурацию, то есть представляли из себя сопла. Все эти лопатки вместе с элементами корпуса, на которых они смонтированы называются сопловым аппаратом .

Схема радиальной центростремительной турбины (с пояснениями).

Рабочее колесо представляет из себя крыльчатку со специально спрофилированными лопатками. Раскрутка рабочего колеса происходит при прохождении газа в сужающихся каналах между лопатками и воздействии на лопатки.

Рабочее колесо радиальной центростремительной турбины.

Радиальные турбины достаточно просты, их рабочие колеса имеют малое количество лопаток. Возможные окружные скорости радиальной турбины при одинаковых напряжениях в рабочем колесе, больше, чем у осевой, поэтому на ней могут срабатываться бо́льшие количества энергии (теплоперепады).

Однако, эти турбины имеют малое проходное сечение и не обеспечивают достаточный расход газа при одинаковых размерах по сравнению с осевыми турбинами. Другими словами, они обладают слишком большими относительными диаметральными размерами, что усложняет их компоновку в едином двигателе.

Кроме того затруднено создание многоступенчатых радиальных турбин из-за больших гидравлических потерь, что ограничивает степень расширения газа в них. Также затруднено осуществление охлаждения таких турбин, что снижает величину возможных максимальных температур газа.

Поэтому применение радиальных турбин в авиации ограничено. Они, в основном, используются в маломощных агрегатах с небольшим расходом газа, чаще всего во вспомогательных механизмах и системах или в двигателях авиамоделей и небольших беспилотных самолетов.

Первый реактивный самолет Heinkel He 178.

ТРД Heinkel HeS3 с радиальной турбиной.

Один из немногих примеров использования радиальной турбины в качестве узла маршевого авиационного ВРД — это двигатель первого настоящего реактивного самолета Heinkel He 178 турбореактивный Heinkel HeS 3 . На фото хорошо просматриваются элементы ступени такой турбины. Параметры этого двигателя вполне соответствовали возможности ее использования.

Осевая авиационная турбина .

Это единственный тип турбины, применяемый сейчас в маршевых авиационных ГТД. Главным источником механической работы на валу, получаемой от такой турбины в двигателе являются рабочие колеса или точнее рабочие лопатки (РЛ), установленные на этих колесах и взаимодействующие с энергетически заряженным газовым потоком (сжатым и нагретым).

Венцы неподвижных лопаток, установленных перед рабочими, организуют правильное направление потока и участвуют в превращении потенциальной энергии газа в кинетическую, то есть разгоняют его в процессе расширения с падением давления.

Эти лопатки в комплекте с элементами корпуса, на которых они смонтированы, называются сопловым аппаратом (СА). Сопловой аппарат в комплекте с рабочими лопатками составляет ступень турбины .

Суть процесса… Обобщение сказанного…

В процессе вышеупомянутого взаимодействия с рабочими лопатками происходит превращение кинетической энергии потока в механическую, вращающую вал двигателя.Такое превращение в осевой турбине может происходить двумя способами:

Пример одноступенчатой активной турбины. Показано изменение параметров по тракту.

1. Без изменения давления, а значит и величины относительной скорости потока (ощутимо меняется только ее направление – поворот потока) в ступени турбины; 2. С падением давления, ростом относительной скорости потока и некоторым изменением ее направления в ступени.

Турбины, работающие по первому способу называются активными . Газовый поток активно (импульсно) воздействует на лопатки из-за изменения своего направления при их обтекании. При втором способе – реактивные турбины . Здесь помимо импульсного воздействия поток воздействует на рабочие лопатки еще и опосредованно (упрощенно говоря), при помощи реактивной силы, что увеличивает мощность турбины. Дополнительное реактивное воздействие достигается за счет специальной профилировки рабочих лопаток.

О понятиях активности и реактивности в общем, для всех турбин (не только авиационных) упоминалось выше. Однако, в современных авиационных ГТД используются только осевые реактивные турбины.

Изменение параметров в ступени осевой газовой турбины.

Так как силовое воздействие на РЛ двойное, то такие осевые турбины еще называют активно-реактивными , что пожалуй более правильно. Такого типа турбина более выгодны в аэродинамическом плане.

Входящие в состав ступени такой турбины неподвижные лопатки соплового аппарата имеют большую кривизну, благодаря чему поперечное сечение межлопаточного канала уменьшается от входа к выходу, то есть сечение f 1 меньше сечения f 0 . Получается профиль сужающегося реактивного сопла.

Следующие за ними рабочие лопатки также имеют большую кривизну. Кроме того по отношению к набегающему потоку (вектор W 1) они расположены так, чтобы избежать его срыва и обеспечить правильное обтекание лопатки. На определенных радиусах РЛ также образуют сужающиеся межлопаточные каналы.

Работа ступени авиационной турбины .

Газ подходит к сопловому аппарату с направлением движения, близким к осевому и скоростью С 0 (дозвуковая). Давление в потоке Р 0 , температура Т 0 . Проходя межлопаточный канал поток разгоняется до скорости С 1 с поворотом до угла α 1 = 20°- 30°. При этом давление и температура падают до величин Р 1 и Т 1 соответственно. Часть потенциальной энергии потока превращается в кинетическую.

Картина движения газового потока в ступени осевой турбины.

Так как рабочие лопатки перемещаются с окружной скоростью U, то в межлопаточный канал РЛ поток входит уже с относительной скоростью W 1 , которая определяется разностью С 1 и U (векторно). Проходя по каналу, поток взаимодействует с лопатками, создавая на них аэродинамические силы Р, окружная составляющая которой Р u и заставляет турбину вращаться.

Из-за сужения канала между лопатками поток разгоняется до скорости W 2 (реактивный принцип), при этом также происходит ее поворот (активный принцип). Абсолютная скорость потока С 1 уменьшается до С 2 — кинетическая энергия потока превращается в механическую на валу турбины. Давление и температура падают до величин Р 2 и Т 2 соответственно.

Абсолютная скорость потока при прохождении ступени несколько увеличивается от С 0 до осевой проекции скорости С 2 . В современных турбинах эта проекция имеет величину 200 — 360 м/с для ступени.

Ступень профилируется так, чтобы угол α 2 был близок к 90°. Отличие обычно составляет 5-10°. Это делается для того, чтобы величина С 2 была минимальной. Особенно это важно для последней ступени турбины (на первой или средних ступенях допускается отклонение от прямого угла до 25°). Причина тому – потери с выходной скоростью , которые как раз и зависят от величины скорости С 2 .

Это те самые потери, которые в свое время так и не дали Лавалю возможности поднять КПД своей первой турбины. Если двигатель реактивный, то оставшаяся энергия может быть сработана в сопле. А вот, например, для вертолетного двигателя, который не использует реактивную тягу, важно, чтобы скорость потока за последней ступенью турбины была как можно меньше.

Таким образом в ступени активно-реактивной турбины расширение газа (снижение давления и температуры), превращение и срабатывание энергии (теплоперепада) происходит не только в СА, но и в рабочем колесе. Распределение этих функций между РК и СА характеризует параметр теории двигателей, называемый степенью реактивности ρ.

Он равен отношению теплоперепада в рабочем колесе к теплоперепаду во всей ступени. Если ρ = 0, то ступень (или вся турбина) – активная. Если же ρ > 0, то ступень реактивная или точнее для нашего случая активно-реактивная. Так как профилировка рабочих лопаток меняется по радиусу, то параметр этот (как впрочем и некоторые другие) вычисляется по среднему радиусу (сечение В-В на рисунке изменения параметров в ступени).

Конфигурация пера рабочей лопатки активно-реактивной турбины.

Изменение давления по длине пера РЛ активно-реактивной турбины.

Для современных ГТД степень реактивности турбин находится в пределах 0,3-0,4. Это значит, что только 30-40% общего теплоперепада ступени (или турбины) срабатывается в рабочем колесе. 60-70% срабатывается в сопловом аппарате.

Кое-что о потерях.

Как уже было сказано, любая турбина (или ее ступень) превращает подведенную к ней энергию потока в механическую работу. Однако, в реальном агрегате этот процесс может обладать различной эффективностью. Часть располагаемой энергии обязательно расходуется «впустую», то есть превращается в потери , которые надо учитывать и принимать меры к их минимизации для повышения эффективности работы турбины, то есть увеличения ее КПД.

Потери складываются из гидравлических и потерь с выходной скоростью . Гидравлические потери включают в себя профильные и концевые. Профильные — это, по сути дела, потери на трение, так как газ, обладая определенной вязкостью, взаимодействует с поверхностями турбины.

Обычно такие потери в рабочем колесе составляют около 2-3%, а в сопловом аппарате — 3-4%. Меры по уменьшению потерь заключаются в «облагораживании» проточной части расчетным и экспериментальным путем, а также корректного расчета треугольников скоростей для потока в ступени турбины, точнее говоря выбора наивыгоднейшей окружной скорости U при заданной скорости С 1 . Эти действия обычно характеризуются параметром U/C 1 . Окружная скорость на среднем радиусе в ТРД равна 270 – 370 м/с.

Гидравлическое совершенство проточной части ступени турбины учитывает такой параметр, как адиабатический КПД . Иногда его еще называют лопаточным, потому что он учитывает потери на трение в лопатках ступени (СА и РЛ). Есть еще один КПД для турбины, характеризующий ее именно как агрегат для получения мощности, то есть степень использования располагаемой энергии для создания работы на валу.

Это так называемый мощностной (или эффективный) КПД . Он равен отношению работы на валу к располагаемому теплоперепаду. Этот КПД учитывает потери с выходной скоростью. Они обычно составляют для ТРД около 10-12% (в современных ТРД С 0 = 100 -180 м/с, С 1 = 500-600 м/с, С 2 = 200-360 м/с).

Для турбин современных ГТД величина адиабатического КПД составляет около 0,9 — 0,92 для неохлаждаемых турбин. В случае, если турбина охлаждаемая, то этот КПД может быть ниже на 3-4%. Мощностной КПД равен обычно 0,78 — 0,83. Он меньше адиабатического на величину потерь с выходной скоростью.

Что касается концевых потерь, то это так называемые «потери на перетекание ». Проточную часть невозможно абсолютно изолировать от остальных частей двигателя из-за присутствия вращающихся узлов в комплексе с неподвижными (корпуса + ротор). Поэтому газ из областей с повышенным давлением стремится перетечь в области с пониженным давлением. В частности, например, из области перед рабочей лопаткой в область за ней через радиальный зазор между пером лопатки и корпусом турбины.

Такой газ не участвует в процессе преобразования энергии потока в механическую, потому что не взаимодействует с лопатками в этом плане, то есть возникают концевые потери (или потери в радиальном зазоре ). Они составляют около 2-3% и отрицательно влияют как на адиабатический, так и на мощностной КПД, уменьшают экономичность ГТД, причем довольно ощутимо.

Известно, например, что увеличение радиального зазора с 1 мм до 5 мм в турбине диаметром 1 м, может привести к увеличению удельного расхода топлива в двигателе более, чем на 10%.

Понятно, что совсем избавиться от радиального зазора невозможно, но его стараются минимизировать. Это достаточно трудно, потому что авиационная турбина – агрегат сильно нагруженный. Точный учет всех факторов, влияющих на величину зазора достаточно труден.

Режимы работы двигателя часто меняются, а значит меняется величина деформаций рабочих лопаток, дисков, на которых они закреплены, корпусов турбины в результате изменения величин температуры, давления и центробежных сил.

Лабиринтное уплотнение.

Здесь же необходимо учитывать величину остаточной деформации при длительной эксплуатации двигателя. Плюс к этому эволюции, выполняемые самолетом, влияют на деформацию ротора, что тоже меняет величину зазоров.

Обычно зазор оценивается после останова прогретого двигателя. В этом случае тонкий внешний корпус остывает быстрее массивных дисков и вала и, уменьшаясь в диаметре, задевает за лопатки. Иногда величина радиального зазора просто выбирается в пределах 1,5-3% от от длины пера лопатки.

Принцип сотового уплотнения.

Для того, чтобы избежать повреждения лопаток, в случае касания их о корпус турбины, в нем часто размещают специальные вставки из материала более мягкого, нежели материал лопаток (например, металлокерамика ). Кроме того используются бесконтактные уплотнения. Обычно это лабиринтные или сотовые лабиринтные уплотнения.

В этом случае рабочие лопатки бандажируются на концах пера и на бандажных полках уже размещаются уплотнения или клинья (для сот). В сотовых уплотнениях из-за тонких стенок сот площадь контакта очень мала (в 10 раз меньше обычного лабиринта), поэтому сборка узла ведется без зазора. После приработки величина зазора обеспечивается около 0,2 мм.

Применение сотового уплотнения. Сравнение потерь при использовании сот (1) и гладкого кольца (2).

Аналогичные способы уплотнений зазоров используются для уменьшения утечки газа из проточной части (например, в междисковое пространство).

САУРЗ…

Это так называемые пассивные методы управления радиальным зазором. Кроме этого на многих ГТД, разработанных (и разрабатываемых) с конца 80-х годов, устанавливаются так называемые «системы активного регулирования радиальных зазоров » (САУРЗ — активный метод). Это автоматические системы, и суть их работы заключается в управлении тепловой инерционностью корпуса (статора) авиационной турбины.

Ротор и статор (внешний корпус) турбины отличаются друг от друга по материалу и по «массивности». Поэтому на переходных режимах они расширяются по разному. Например, при переходе двигателя с пониженного режима работы на повышенный, высокотемпературный, тонкостенный корпус быстрее (чем массивный ротор с дисками)) прогревается и расширяется, увеличивая радиальный зазор между собой и лопатками. Плюс к этому перемены давления в тракте и эволюции самолета.

Чтобы этого избежать, автоматическая система (обычно главный регулятор типа FADEC ) организует подачу охлаждающего воздуха на корпус турбины в необходимых количествах. Нагрев корпуса, таким образом, стабилизируется в необходимых пределах, а значит меняется величина его линейного расширения и, соответственно, величина радиальных зазоров.

Все это позволяет экономить топливо, что очень важно для современной гражданской авиации. Наиболее эффективно системы САУРЗ применяются в турбинах низкого давления на ТВРД типа GE90, Trent 900, и некоторых других.

Значительно реже, однако достаточно эффективно для синхронизации темпов прогрева ротора и статора применяется принудительный обдув дисков турбины (а не корпуса). Такие системы применяются на двигателях CF6-80 и PW4000.

———————-

В турбине регламентируются также и осевые зазоры . Например между выходными кромками СА и входными РЛ обычно зазор в пределах 0,1-0,4 от хорды РЛ на среднем радиусе лопаток. Чем меньше этот зазор, тем меньше потери энергии потока за СА (на трение и выравнивание поля скоростей за СА). Но при этом растет вибрация РЛ из-за попеременного попадания из областей за корпусами лопаток СА в межлопаточные области.

Немного общего о конструкции…

Осевые авиационные турбины современных ГТД в конструктивном плане могут иметь различную форму проточной части.

Dср = (Dвн+Dн) /2

1. Форма с постоянным диаметром корпуса (Dн). Здесь внутренний и средний диаметры по тракту уменьшаются.

Постоянный наружный диаметр.

Такая схема хорошо вписывается в габариты двигателя (и фюзеляжа самолета). Обладает хорошим распределением работы по ступеням, особенно для двухвальных ТРД.

Однако, в этой схеме велик так называемый угол раструба, что чревато отрывом потока от внутренних стенок корпуса и, следовательно, гидравлическими потерями.

Постоянный внутренний диаметр.

При проектировании стараются не допускать величину угла раструба более 20°.

2. Форма с постоянным внутренним диаметром(Dв).

Средний диаметр и диаметр корпуса увеличиваются по тракту. Такая схема плохо вписывается в габариты двигателя. В ТРД из-за «разбежки» потока от внутреннего корпуса, необходимо его доворачивать на СА, что влечет за собой гидравлические потери.

Постоянный средний диаметр.

Схема более целесообразна к применению в ТРДД.

3. Форма с постоянным средним диаметром(Dср). Диаметр корпуса увеличивается, внутренний – уменьшается.

Схема обладает недостатками двух предыдущих. Но при этом расчет такой турбины достаточно прост.

Современные авиационные турбины чаще всего многоступенчаты. Главная причина тому (как уже говорилось выше) – большая располагаемая энергия турбины в целом. Для обеспечения оптимальной сочетания окружной скорости U и скорости С 1 (U/C 1 – оптимальное), а значит высокого общего КПД и хорошей экономичности необходимо распределение всей имеющейся энергии по ступеням.

Пример трехступенчатой турбины ТРД.

При этом, правда, сама турбина конструктивно усложняется и утяжеляется. Из-за небольшого температурного перепада на каждой ступени (он распределен на все ступени) бо́льшее количество первых ступеней подвергается действию высоких температур и часто требует дополнительного охлаждения .

Четырехступенчатая осевая турбина ТВД.

В зависимости от типа двигателя количество ступеней может быть разным. Для ТРД обычно до трех, для двухконтурных двигателей до 5-8 ступеней. Обычно, если двигатель многовальный , то турбина имеет несколько (по числу валов) каскадов , каждый из которых приводит свой агрегат и сам может быть многоступенчатым (в зависимости от степени двухконтурности).

Двухвальная осевая авиационная турбина.

Например в трехвальном двигателе Rolls-Royce Trent 900 турбина имеет три каскада: одноступенчатый для привода компрессора высокого давления, одноступенчатый для привода промежуточного компрессора и пятиступенчатый для привода вентилятора. Совместная работа каскадов и определение необходимого числа ступеней в каскадах описывается в «теории двигателей» отдельно.

Сама авиационная турбина , упрощенно говоря, представляет собой конструкцию, состоящую из ротора, статора и различных вспомогательных элементов конструкции. Статор состоит из внешнего корпуса, корпусов сопловых аппаратов и корпусов подшипников ротора. Ротор обычно представляет из себя дисковую конструкцию в котором диски соединены с ротором и между собой с использованием различных дополнительных элементов и способов крепления.

Пример одноступенчатой турбины ТРД. 1 - вал, 2 - лопатки СА, 3 - диск рабочего колеса, 4 - рабочие лопатки.

На каждом диске, как основе рабочего колеса расположены рабочие лопатки . При конструировании лопатки стараются выполнять с меньшей хордой из соображения меньшей ширины обода диска, на котором они установлены, что уменьшает его массу. Но при этом для сохранения параметров турбины приходится увеличивать длину пера, что может повлечь за собой бандажирование лопаток для увеличения прочности.

Возможные типы замков крепления рабочих лопаток в диске турбины.

Лопатка крепится в диске с помощью замкового соединения . Такое соединение – это одно из самых нагруженных элементов конструкции в ГТД. Все нагрузки, воспринимаемые лопаткой, передаются на диск через замок и достигают очень больших значений, тем более, что из-за разности материалов, диск и лопатки обладают различными коэффициентами линейного расширения, да к тому же из-за неравномерности поля температур нагреваются по разному.

С целью оценки возможности уменьшения нагрузки в замковом соединении и увеличения, тем самым, надежности и срока службы турбины, проводятся исследовательские работы, среди которых достаточно перспективными считаются эксперименты по биметаллическим лопаткам или применению в турбинах рабочих колес-блисков.

При использовании биметаллических лопаток уменьшаются нагрузки в замках их крепления на диске за счет изготовления замковой части лопатки из материала, аналогичного материалу диска (или близкого по параметрам). Перо лопатки изготавливается из другого металла, после чего они соединяются с применением спецтехнологий (получается биметалл).

Блиски , то есть рабочие колеса, в которых лопатки выполнены за одно целое с диском, вообще исключают наличие замкового соединения, а значит и лишних напряжений в материале рабочего колеса. Такого типа узлы уже применяются в компрессорах современных ТРДД. Однако, для них значительно усложняется вопрос ремонта и уменьшаются возможности высокотемпературного использования и охлаждения в авиационной турбине .

Пример крепления рабочих лопаток в диске с помощью замков "елочка".

Наиболее распространенный способ крепления лопаток в тяжело нагруженных дисках турбин – это так называемая «елочка» . Если же нагрузки умеренные, то могут быть применены и другие типы замков, которые более просты в конструктивном отношении, например цилиндрические или Т-образные.

Контроль…

Так как условия работы авиационной турбины крайне тяжелые, а вопрос надежности, как важнейшего узла летательного аппарата имеет первостепенный приоритет, то проблема контроля состояния элементов конструкции стоит в наземной эксплуатации на первом месте. В особенности это касается контроля внутренних полостей турбины, где как раз и располагаются наиболее нагруженные элементы.

Осмотр этих полостей конечно невозможен без использования современной аппаратуры дистанционного визуального контроля . Для авиационных газотурбинных двигателей в этом качестве выступают различного вида эндоскопы (бороскопы). Современные устройства такого типа достаточно совершенны и обладают большими возможностями.

Осмотр газовоздушного тракта ТВРД с помощью эндоскопа Vucam XO.

Ярким примером может служить портативный измерительный видеоэндоскоп Vucam XO немецкой компании ViZaar AG . Обладая небольшими размерами и массой (менее 1,5 кг), этот аппарат тем не менее очень функционален и располагает внушительными возможностями как осмотра, так и обработки получаемой информации.

Vucam XO абсолютно мобилен. Весь его комплект располагается в небольшом пластмассовом кейсе. Видеозонд с большим количеством легкосменяемых оптических адаптеров обладает полноценной артикуляцией в 360°, диаметром 6,0 мми может иметь различную длину (2,2м; 3,3м; 6,6м).

Бороскопический осмотр двигателя вертолета с помощью эндоскопа Vucam XO.

Бороскопические проверки с использованием подобных эндоскопов предусмотрены в регламентных правилах для всех современных авиадвигателей. В турбинах обычно осматривается проточная часть. Зонд эндоскопа проникает во внутренние полости авиационной турбины через специальные контрольные порты .

Порты бороскопического контроля на корпусе турбины ТВРД CFM56.

Они представляют из себя отверстия в корпусе турбины, закрытые герметичными пробками (обычно резьбовыми, иногда подпружиненными). В зависимости от возможностей эндоскопа (длина зонда) может понадобиться проворачивание вала двигателя. Лопатки (СА и РЛ) первой ступени турбины могут осматриваться через окна на корпусе камеры сгорания, а последней ступени — через сопло двигателя.

Что позволит поднять температуру…

Одно из генеральных направлений развития ГТД всех схем – увеличение температуры газа перед турбиной. Это позволяет ощутимо увеличивать тягу без увеличения расхода воздуха, что может привести к уменьшению лобовой площади двигателя и росту удельной лобовой тяги.

В современных двигателях температура газа (после факела) на выходе из камеры сгорания может достигать 1650°С (с тенденцией к росту), поэтому для нормальной работы турбины при столь больших термических нагрузках необходимо принятие специальных, часто предохранительных мер.

Первое (и самое простоев этой ситуации) – использование жаропрочных и жаростойких материалов , как металлических сплавов, так и (в перспективе) специальных композитных и керамических материалов, которые используются для изготовления самых нагруженных деталей турбины – сопловых и рабочих лопаток, а также дисков. Самые нагруженные из них – это, пожалуй, рабочие лопатки.

Металлические сплавы – это в основном сплавы на основе никеля (температура плавления — 1455°С) с различными легирующими добавками. В современные жаропрочные и жаростойкие сплавы для получения максимальных высокотемпературных характеристик добавляют до 16-ти наименований различных легирующих элементов.

Химическая экзотика…

В их числе, например, хром, марганец, кобальт, вольфрам, алюминий, титан, тантал, висмут и даже рений или вместо него рутений и другие. Особенно перспективен в этом плане рений (Re – рений, применяется в России), используемый сейчас вместо карбидов, но он чрезвычайно дорог и запасы его невелики. Также перспективным считается использование силицида ниобия.

Кроме того поверхность лопатки часто покрывается нанесенным по особой технологии специальным теплозащитным слоем (антитермальное покрытие — thermal-barrier coating или ТВС ) , значительно уменьшающим величину теплопотока в тело лопатки (термобарьерные функции) и предохраняющим ее от газовой коррозии (жаростойкие функции).

Пример термозащитного покрытия. Показан характер изменения температуры по сечению лопатки.

На рисунке (микрофото) показан теплозащитный слой на лопатке турбины высокого давления современного ТРДД. Здесь TGO (Thermally Grown Oxide) – термически растущий оксид; Substrate – основной материал лопатки; Bond coat – переходный слой. В состав ТВС сейчас входят никель, хром, алюминий, иттрий и др. Также проводятся опытные работы по использованию керамических покрытий на основе оксида циркония, стабилизированного оксидом циркония (разработки ВИАМ).

Для примера…

Достаточно широкой известностью в двигателестроении, начиная с послевоенного периода и в настоящее время пользуются жаропрочные никелевые сплавы компании Special Metals Corporation – США, содержащие не менее 50% никеля и 20% хрома, а также титан, алюминий и немало других составляющих, добавляемых в небольших количествах.

В зависимости от профильного предназначения (РЛ, СА, диски турбин, элементы проточной части, сопла, компрессора и др., а также неавиационные области применения), своего состава и свойств они объединены в группы, каждая из которых включает различные варианты сплавов.

Лопатки турбины двигателя Rolls-Royce Nene, изготовленные из сплава Nimonic 80A.

Некоторые из этих групп: Nimonic, Inconel, Incoloy, Udimet/Udimar, Monel и другие. Например, сплав Nimonic 90 , разработанный еще в 1945 году и применявшийся для изготовления элементов авиационных турбин (в основном лопатки), сопел и частей летательных аппаратов, имеет состав: никель – 54%минимум, хром – 18-21%, кобальт – 15-21%, титан – 2-3%, алюминий – 1-2%, марганец – 1%, цирконий -0,15% и другие легирующие элементы (в малых количества). Этот сплав производится и по сей день.

В России (СССР) разработкой такого типа сплавов и других важных материалов для ГТД занимался и успешно занимается ВИАМ (Всероссийский научно-исследовательский институт авиационных материалов). В послевоенное время институт разрабатывал деформируемые сплавы (типа ЭИ437Б), с начала 60-х создал целую серию высококачественных литьевых сплавов (об этом ниже).

Однако, практически все жаропрочные металлические материалы выдерживают без охлаждения температуры примерно до ≈ 1050°С.

Поэтому:

Вторая, широко используемая мера, это применение различных систем охлаждения лопаток и других конструктивных элементов авиационных турбин . Без охлаждения в современных ГТД обойтись пока нельзя, несмотря на применение новых высокотемпературных жаропрочных сплавов и специальных способов изготовления элементов.

Среди систем охлаждения выделяют два направления: системы открытые и замкнутые . Замкнутые системы могут использовать принудительную циркуляцию жидкого теплоносителя в системе лопатки — радиатор или же использовать принцип «термосифонного эффекта».

В последнем способе движение теплоносителя происходит под действием гравитационных сил, когда более теплые слои вытесняют более холодные. В качестве теплоносителя здесь может быть использован, например, натрий или сплав натрия и калия.

Однако, замкнутые системы из-за большого количества трудно решаемых проблем в авиационной практике не применяются и находятся в стадии экспериментальных исследований.

Примерная схема охлаждения многоступенчатой турбины ТРД. Показаны уплотнения между СА и ротором. А - решетка профилей для закрутки воздуха с целью его предварительного охлаждения.

Зато в широком практическом применении находятся открытые системы охлаждения . Хладагентом здесь служит воздух, подаваемый обычно под различным давлением из-за различных же ступеней компрессора внутрь лопаток турбины. В зависимости от максимальной величины температуры газа, при которой целесообразно применение этих систем, их можно разделить на три вида: конвективный , конвективно-пленочный (или заградительный) и пористый .

При конвективном охлаждении воздух подается внутрь лопатки по специальным каналам и, омывая внутри нее наиболее нагретые участки, выходит наружу в поток в области с более низким давлением. При этом могут быть использованы различные схемы организации течения воздуха в лопатках зависимости от формы каналов для него: продольная, поперечная или петлеобразная (смешанная или усложненная).

Типы охлаждения: 1 - конвективный с дефлектором, 2 - конвективно-пленочный, 3 - пористый. Лопатка 4 - теплозащитное покрытие.

Наиболее простая схема с продольными каналами вдоль пера. Здесь выход воздуха организуется обычно в верхней части лопатки через бандажную полку. В такой схеме имеет место довольно большая неравномерность температуры вдоль пера лопатки – до 150-250˚, что неблагоприятно влияет на прочностные свойства лопатки. Схема используется на двигателях с температурой газа до ≈ 1130ºС.

Еще один способ конвективного охлаждения (1) подразумевает наличие внутри пера специального дефлектора (тонкостенная оболочка – вставляется внутрь пера), который способствует подводу охлаждающего воздуха сначала на наиболее нагретые участки. Дефлектор образует своего рода сопло, выдувающее воздух в переднюю часть лопатки. Получается струйное охлаждение наиболее нагретой части. Далее воздух, омывая остальные поверхности выходит через продольные узкие отверстия в пере.

Рабочая лопатка турбины двигателя CFM56.

В такой схеме температурная неравномерность значительно ниже, кроме того сам дефлектор, который вставляется в лопатку под натягом по нескольким центрирующим поперечным пояскам, благодаря своей упругости, служит в роли демпфера и гасит колебания лопаток. Такая схема используется при максимальной температуре газа ≈ 1230°С.

Так называемая полупетлевая схема позволяет добиться относительно равномерного поля температур в лопатке. Это достигается экспериментальным подбором расположения различных ребер и штырьков, направляющих потоки воздуха, внутри тела лопатки. Эта схема допускает максимальную температуру газа до 1330°С.

Сопловые лопатки конвективно охлаждаются аналогично рабочим. Они обычно выполняются двухполостными с дополнительными ребрами и штырьками для интенсификации процесса охлаждения. В переднюю полость у передней кромки подается воздух более высокого давления, чем в заднюю (из-за разных ступеней компрессора) и выпускается в различные зоны тракта с целью поддержания минимально необходимой разности давлений для обеспечения требуемой скорости движения воздуха в каналах охлаждения.

Примеры возможных способов охлаждения рабочих лопаток. 1 - конвективное, 2 - конвективно-пленочное, 3 конвективно-пленочное с усложненными петлевыми каналами в лопатке.

Конвективно-пленочное охлаждение (2) применяется при еще более высокой температуре газа – до 1380°С. При этом способе часть охлаждающего воздуха через специальные отверстия в лопатке выпускается на ее наружную поверхность, создавая тем самым своего рода заградительную пленку , которая защищает лопатку от соприкосновения с горячим потоком газа. Этот способ используется как для рабочих, так и для сопловых лопаток.

Третий способ – пористое охлаждение (3). В этом случае силовой стержень лопатки с продольными каналами покрывается специальным пористым материалом, который позволяет осуществить равномерный и дозированный выпуск охладителя на всю поверхность лопатки, омываемую газовым потоком.

Это пока перспективный способ, в массовой практике использования ГТД не применяющийся из-за сложностей с подбором пористого материала и большой вероятностью достаточно быстрого засорения пор. Однако, в случае решения этих проблем предположительно возможная температура газа при таком типе охлаждения может достигать 1650°С.

Диски турбины и корпуса СА также охлаждаются воздухом из-за различных ступеней компрессора при его прохождении по внутренним полостям двигателя с омыванием охлаждаемых деталей и последующим выпуском в проточную часть.

Из-за достаточно большой степени повышения давления в компрессорах современных двигателей сам охлаждающий воздух может иметь довольно высокую температуру. Поэтому для повышения эффективности охлаждения применяют мероприятия по предварительному снижению этой температуры.

Для этого воздух перед подачей в турбину на лопатки и диски может пропускаться через специальные решетки профилей, аналогичные СА турбины, где воздух подкручивается в направлении вращения рабочего колеса, расширяясь и охлаждаясь при этом. Величина охлаждения может составить 90-160°.

Для такого же охлаждения могут быть использованы воздухо-воздушные радиаторы, охлаждаемые воздухом второго контура. На двигателе АЛ-31Ф такой радиатор дает понижение температуры до 220° в полете и 150° на земле.

На нужды охлаждения авиационной турбины от компрессора забирается достаточно большое количество воздуха. На различных двигателях – до 15-20%. Это существенно увеличивает потери, которые учитываются при термогазодинамическом расчете двигателя. На некоторых двигателях установлены системы, снижающие подачу воздуха на охлаждение (или вообще ее закрывающие) при пониженных режимах работы двигателя, что положительно влияет на экономичность.

Схема охлаждения 1-й ступени турбины ТРДД НК-56. Показаны также сотовые уплотнения и лента отключения охлаждения на пониженных режимах работы двигателя.

При оценке эффективности системы охлаждения обычно учитывается и дополнительные гидравлические потери на лопатках вследствие изменения их формы при выпуске охлаждающего воздуха. КПД реальной охлаждаемой турбины примерно на 3-4% ниже, чем неохлаждаемой.

Кое-что об изготовлении лопаток…

На реактивных двигателях первого поколения турбинные лопатки в основном изготавливались методом штамповки с последующей длительной обработкой. Однако, в 50-х годах специалисты ВИАМ убедительно доказали, что перспективу повышения уровня жаропрочности лопаток открывают именно литейные а не деформируемые сплавы. Постепенно был осуществлен переход на это новое направление (в том числе и на Западе).

В настоящее время в производстве используется технология точного безотходного литья, что позволяет выполнять лопатки со специально профилированными внутренними полостями, которые используются для работы системы охлаждения (так называемая технология литья по выплавляемым моделям ).

Это, по сути дела единственный сейчас способ получения охлаждаемых лопаток. Он тоже совершенствовался с течением времени. На первых этапах при литьевой технологии изготавливали лопатки с разноразмерными зернами кристаллизации , которые ненадежно сцеплялись между собой, что значительно уменьшало прочность и ресурс изделия.

В дальнейшем, с применением специальных модификаторов, начали изготавливать литые охлаждаемые лопатки с однородными, равноосными, мелкими структурными зернами. Для этого ВИАМ в 60-х годах разработал первые серийные отечественные жаропрочные сплавы для литья ЖС6, ЖС6К, ЖС6У, ВЖЛ12У.

Их рабочая температура была на 200° выше, чем у рапространенного тогда деформируемого (штамповка) сплава ЭИ437А/Б (ХН77ТЮ/ЮР). Лопатки, изготавливаемые из этих материалов работали минимум по 500 часов без визуально видимых признаком разрушения. Такого типа технология изготовления используется и сейчас. Тем не менее межзеренные границы остаются слабым местом структуры лопатки, и именно по ним начинается ее разрушение.

Поэтому с ростом нагрузочных характеристик работы современных авиационных турбин (давление, температура, центробежные нагрузки) появилась необходимость разработки новых технологий изготовления лопаток, потому что многозеренная структура уже во многом не удовлетворяла утяжеленным условиям эксплуатации.

Примеры структуры жаропрочного материала рабочих лопаток. 1 - равноосная зернистость, 2 - направленная кристаллизация, 3 - монокристалл.

Так появился «метод направленной кристаллизации ». При таком методе в застывающей отливке лопатки образуются не отдельные равноосные зерна металла, а длинные столбчатые кристаллы, вытянутые строго вдоль оси лопатки. Подобного рода структура значительно увеличивает сопротивление лопатки излому. Это похоже на веник, который сломать очень трудно, хотя каждый из составляющих его прутиков ломается без проблем.

Такая технология была впоследствии доработана до еще более прогрессивного «метода монокристаллического литья », когда одна лопатка представляет из себя практически один целый кристалл. Этого типа лопатки сейчас также устанавливаются в современных авиационных турбинах . Для их изготовления используются специальные, в том числе так называемые ренийсодержащие сплавы.

В 70-х и 80-х годах в ВИАМе были разработаны сплавы для литья турбинных лопаток с направленной кристаллизацией: ЖС26, ЖС30, ЖС32, ЖС36, ЖС40, ВКЛС-20, ВКЛС-20Р; а в 90-х – коррозионно-стойкие сплавы длительного ресурса: ЖСКС1 и ЖСКС2.

Далее, работая в этом направлении, ВИАМ с начала 2000 года по настоящее время создал высокорениевые жаропрочные сплавы третьего поколения: ВЖМ1 (9,3%Re), ВЖМ2 (12%Re), ЖС55 (9%Re) и ВЖМ5 (4%Re). Для еще большего совершенствования характеристик за последние 10 лет были проведены экспериментальные исследования, результатом которых стали рений-рутенийсодержащие сплавы четвертого – ВЖМ4 и пятого поколений ВЖМ6.

В качестве помощников…

Как уже говорилось ранее, в ГТД применяются только реактивные (или активно-реактивные) турбины. Однако, в заключении стоит вспомнить, что среди используемых авиационных турбин есть и активные. Они, в основном, выполняют второстепенные задачи и в работе маршевых двигателей участия не принимают.

И тем не менее роль их часто бывает очень важна. В этом случае речь о воздушных стартерах , используемых для запуска . Существуют различные виды стартерных устройств, применяемых для раскрутки роторов газотурбинных двигателей. Воздушный стартер занимает среди них, пожалуй, самое видное место.

Воздушный стартер ТРДД.

Агрегат этот, на самом деле, несмотря на важность функций, принципиально достаточно прост. Основным узлом здесь является одно- или двухступенчатая активная турбина, которая вращает через редуктор и коробку приводов ротор двигателя (в ТРДД обычно ротор низкого давления).

Расположение воздушного стартера и его рабочей магистрали на ТРДД,

Сама турбина раскручивается потоком воздуха, поступающего от наземного источника, либо бортовой ВСУ, либо от другого, уже запущенного двигателя самолета. На определенном этапе цикла запуска, стартер автоматически отключается.

В подобного рода агрегатах в зависимости от требуемых выходных параметров могут также использоваться и радиальные турбины . Они же могут применяться в системах кондиционирования воздуха в салонах самолетов в качестве элемента турбохолодильника, в котором эффект расширения и снижения температуры воздуха на турбине используется для охлаждения воздуха, поступающего в салоны.

Кроме того, как активные осевые, так и радиальные турбины применяются в системах турбонаддува поршневых авиационных двигателей. Такая практика началась еще до превращения турбины в важнейший узел ГТД и продолжается по сей день.

Пример использования радиальной и осевой турбин во вспомогательных устройствах.

Аналогичные системы с использованием турбокомпрессоров находят применение в автомобилях и вообще в различных системах подачи сжатого воздуха.

Таким образом авиационная турбина и во вспомогательном смысле отлично служит людям.

———————————

Ну вот, пожалуй, и все на сегодня. На самом деле здесь еще много о чем можно написать и в плане дополнительных сведений, и в плане более полного описания уже сказанного. Тема ведь очень обширная. Однако, нельзя объять необъятное:-). Для общего ознакомления, пожалуй, достаточно. Спасибо, что дочитали до конца.

До новых встреч…

В завершение картинки, » невместившиеся» в текст.

Пример одноступенчатой турбины ТРД.

Модель эолипила Герона в Калужском музее космонавтики.

Артикуляция видеозонда эндоскопа Vucam XO.

Экран многофункционального эндоскопа Vucam XO.

Эндоскоп Vucam XO.

Пример термозащитного покрытия на лопатках СА двигателя GP7200.

Сотовые пластины, используемые для уплотнений.

Возможные варианты элементов лабиринтного уплотнения.

Лабиринтное сотовое уплотнение.

Авиационные двигатели также часто используются для генерации электрической мощности, благодаря их способности запускаться, останавливаться и изменять нагрузку быстрее, чем промышленные машины.

Типы газотурбинных двигателей

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля , мощные электрогенераторы и т. д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Турбореактивный двигатель

Схема турбореактивного двигателя: 1 - входное устройство; 2 - осевой компрессор; 3 - камера сгорания; 4 - рабочие лопатки турбины; 5 - сопло.

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10-45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина , газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы , оснащённые системами охлаждения, и термобарьерные покрытия .

Турбореактивный двигатель с форсажной камерой

Турбореактивный двигатель с форсажной камерой (ТРДФ) - модификация ТРД, применяемая в основном на сверхзвуковых самолётах . Между турбиной и соплом устанавливается дополнительная форсажная камера , в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50%, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

« Основные параметры турбореактивных двигателей различных поколений »

Поколение/
период
Т-ра газа
перед турбиной
°C
Степень сжатия
газа, π к *
Характерные
представители
Где установлены
1 поколение
1943-1949 гг.
730-780 3-6 BMW 003, Jumo 004 Me 262 , Ar 234 , He 162
2 поколение
1950-1960 гг.
880-980 7-13 J 79, Р11-300 F-104 , F4, МиГ-21
3 поколение
1960-1970 гг.
1030-1180 16-20 TF 30, J 58, АЛ 21Ф F-111 , SR 71,
МиГ-23 Б, Су-24
4 поколение
1970-1980 гг.
1200-1400 21-25 F 100, F 110, F404 ,
РД-33 , АЛ-31Ф
F-15, F-16,
МиГ-29 , Су-27
5 поколение
2000-2020 гг.
1500-1650 25-30 F119-PW-100, EJ200,
F414, АЛ-41Ф
F-22, F-35,
ПАК ФА

Начиная с 4-го поколения рабочие лопатки турбины выполняются из монокристаллических сплавов, охлаждаемые.

Турбовинтовой двигатель

Схема турбовинтового двигателя: 1 - воздушный винт; 2 - редуктор; 3 - турбокомпрессор.

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт , соединённый через редуктор с валом турбокомпрессора. Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10-15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов , имеющих большую грузоподъёмность и дальность полёта. Крейсерская скорость самолётов, оснащённых ТВД, 600-800 км/ч.

Турбовальный двигатель

Турбовальный двигатель (ТВаД) - газотурбинный двигатель, у которого вся развиваемая мощность через выходной вал передается потребителю. Основная область применения - силовые установки вертолетов.

Двухконтурные двигатели

Дальнейшее повышение эффективности двигателей связано с появлением так называемого внешнего контура. Часть избыточной мощности турбины передаётся компрессору низкого давления на входе двигателя.

Двухконтурный турбореактивный двигатель

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 - компрессор низкого давления; 2 - внутренний контур; 3 - выходной поток внутреннего контура; 4 - выходной поток внешнего контура.

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 - потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

Двигатели с малой степенью двухконтурности (m<2) применяются для сверхзвуковых самолётов, двигатели с m>2 для дозвуковых пассажирских и транспортных самолётов.

Турбовентиляторный двигатель

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 - вентилятор; 2 - защитный обтекатель; 3 - турбокомпрессор; 4 - выходной поток внутреннего контура; 5 - выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) - это ТРДД со степенью двухконтурности m=2-10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

Турбовинтовентиляторный двигатель

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20-90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя , лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие - винтовентилятор приводится от турбины не напрямую, как вентилятор, а через редуктор.

Вспомогательная силовая установка

Вспомогательная силовая установка (ВСУ) - небольшой газотурбинный двигатель, являющийся дополнительным источником мощности, например, для запуска маршевых двигателей самолетов. ВСУ обеспечивает бортовые системы сжатым воздухом (в том числе для вентиляции салона), электроэнергией и создает давление в гидросистеме летательного аппарата.

Судовые установки

Используются в судовой промышленности для снижения веса. GE LM2500 и LM6000 - две характерных модели этого типа машин.

Наземные двигательные установки

Другие модификации газотурбинных двигателей используются в качестве силовых установок на судах (газотурбоходы), железнодорожном (газотурбовозы) и другом наземном транспорте, а также на электростанциях , в том числе, передвижных, и для перекачки природного газа . Принцип работы практически не отличается от турбовинтовых двигателей .

Газовая турбина с замкнутым циклом

В газовой турбине с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках . Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют турбиной внешнего сгорания. На практике газовые турбины с замкнутым циклом используются редко.

Газовая турбина с внешним сгоранием

Большинство газовых турбин представляют собой двигатели внутреннего сгорания, но также возможно построить газовую турбину внешнего сгорания, которая, фактически, является турбинной версией теплового двигателя .

При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолченная биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе, продукты сгорания проходят сквозь турбину. В косвенной системе, используется теплообменник и чистый воздух проходит сквозь турбину. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Использование в наземных транспортных средствах

A 1968 Howmet TX - единственная в истории турбина, принесшая победу в автомобильной гонке.

Газовые турбины используются в кораблях, локомотивах и танках. Множество экспериментов проводилось с автомобилями, оснащенными газовыми турбинами.

В 1950 году дизайнер Ф.Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировал первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решетки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине , парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в Лондоне в Музее Науки .

Команды Rover и British Racing Motors (BRM) (Формула-1) объединили усилия для создания Rover-BRM, авто, с приводом от газовых турбин, которое приняло участие в гонке 24 часа Ле-Мана 1963 года, управляемое Грэмом Хиллом и Гитнером Ричи. Оно имело среднюю скорость - 107,8 миль/ч (173 км/ч), а максимальную скорость - 142 миль/ч (229 км/ч). Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины Continental Motors Company, благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.

На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок Эндрю Гранателли и управляемое Парнелли Джонсом, почти выиграло в гонке "Инди-500" ; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney . У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин (турболагом).

Оригинальная серия концептуальных авто General Motors Firebird была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.

Использование в танках

Первые исследования в области применения газовой турбины в танках проводились в Германии Управлением вооруженных сухопутных сил начиная с середины 1944 года. Первым массовым танком, на котором устанавливали газотурбинный двигатель стал С-танк . Газовые двигатели установлены в российском Т-80 и американском М1 Абрамс .
Газотурбинные двигатели, устанавливаемые в танках, имеют при схожих с дизельными размерами гораздо большую мощность, меньший вес и меньшую шумность. Однако из-за низкого КПД подобных двигателей требуется гораздо большее количество топлива для сравнимого с дизельным двигателем запаса хода.

Конструкторы газотурбинных двигателей

См. также

Ссылки

  • Газотурбинный двигатель - статья из Большой советской энциклопедии
  • ГОСТ Р 51852-2001

В данном пособии рассматривается лишь один тип газотурбинные двигатели ГТД т. ГТД широко применяются в авиационной наземной и морской технике.1 показаны основные объекты применения современных ГТД. Классификация ГТД по назначению и объектам применения В настоящее время в общем объеме мирового производства ГТД в стоимостном выражении авиационные двигатели составляют около 70 наземные и морские около 30 .


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 1

ОБЩИЕ СВЕДЕНИЯ О ГАЗОТУРБИННЫХ ДВИГАТЕЛЯХ

1.1. Введение

В современной технике разработано и используется множество различных типов двигателей.

В данном пособии рассматривается лишь один тип - газотурбинные двигатели (ГТД), т.е. двигатели, имеющие в своем составе компрессор, камеру сгорания и газовую турбину.

ГТД широко применяются в авиационной, наземной и морской технике. На рис. 1.1 показаны основные объекты применения современных ГТД.

Рис. 1.1. Классификация ГТД по назначению и объектам применения

В настоящее время в общем объеме мирового производства ГТД в стоимостном выражении авиационные двигатели составляют около 70 %, наземные и морские - около 30 %. Объем производства наземных и морских ГТД распределяется следующим образом:

Энергетические ГТД ~ 91 %;

ГТД для привода промышленного оборудования и наземных транспортных средств ~ 5 %;

ГТД для привода судовых движителей ~ 4 %.

В современной гражданской и военной авиации ГТД практически полностью вытеснили поршневые двигатели и заняли доминирующее положение.

Их широкое применение в энергетике, промышленности и транспорте стало возможным благодаря более высокой энергоотдаче, компактности и малому весу по сравнению с другими типами силовых установок.

Высокие удельные параметры ГТД обеспечиваются особенностями конструкции и термодинамического цикла. Цикл ГТД, хотя и состоит из тех же основных процессов, что и цикл поршневых двигателей внутреннего сгорания, имеет существенное отличие. В поршневых двигателях процессы происходят последовательно, один за другим, в одном и том же элементе двигателя - цилиндре. В ГТД эти же процессы происходят одновременно и непрерывно в различных элементах двигателя. Благодаря этому в ГТД нет такой неравномерности условий работы элементов двигателя, как в поршневом, а средняя скорость и массовый расход рабочего тела в 50...100 раз выше, чем в поршневых двигателях. Это позволяет сосредоточить в малогабаритных ГТД большие мощности.

Авиационные ГТД по способу создания тягового усилия относятся к классу реактивных двигателей, классификация которых показана на рис. 1.2.

Рис. 1.2. Классификация реактивных двигателей.

Ко второй группе относятся воздушно-реактивные двигатели (ВРД), для которых атмосферный воздух является основным компонентом рабочего тела, а кислород воздуха используется как окислитель. Задействование воздушной среды позволяет значительно сократить запас рабочего тела и повысить экономичность двигателя.

Газотурбинные ВРД, получившие свое название из-за наличия турбокомпрессорного агрегата, имеющего в своем составе газовую турбину как основной источник механической энергии.

Реактивные двигатели, в которых вся полезная работа цикла затрачивается на ускорение рабочего тела, называются двигателями прямой реакции. К ним относятся ракетные двигатели всех типов, комбинированные двигатели, прямоточные и пульсирующие ВРД, а из группы ГТД - турбореактивные двигатели (ТРД) и двухконтурные турбореактивные двигатели (ТРДД). Если же основная часть полезной работы цикла в виде механической работы на валу двигателя передается специальному движителю, например воздушному винту, то такой двигатель называется двигателем непрямой реакции. Примерами двигателей непрямой реакции являются турбовинтовой двигатель (ТВД) и вертолетный ГТД.

Классическим примером двигателя непрямой реакции может служить также поршневая винтомоторная установка. Качественного отличия по способу создания тягового усилия между ней и турбовинтовым двигателем нет.

1.2. ГТД наземного и морского применения

Параллельно с развитием авиационных ГТД началось применение ГТД в промышленности и на транспорте. B1939r. швейцарская фирма A.G. Brown Bonery ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и КПД 17,4 %. Эта электростанция и в настоящее время находится в работоспособном состоянии. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт разработки этой же фирмы. С конца 1940-хгг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов на магистральных газопроводах для привода нагнетателей природного газа.

Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, экономичности, надежности, автоматизации эксплуатации, улучшения экологических характеристик.

Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками - паротурбинными, дизельными и др. К таким преимуществам относятся:

Большая мощность в одном агрегате;

Компактность, малая масса рис. 1.3;

Уравновешенность движущихся элементов;

Широкий диапазон применяемых топлив;

Легкий и быстрый запуск, в том числе при низких температурах;

Хорошие тяговые характеристики;

Высокая приемистость и хорошая управляемость.

Рис. 1.3. Сравнение габаритных размеров ГТД и дизельного двигателя мощностью 3 МВт

Основным недостатком первых моделей на земных и морских ГТД была относительно низкая экономичность. Однако эта проблема достаточно быстро преодолевалась в процессе постоянного совершенствования двигателей, чему способствовало опережающее развитие технологически близких авиационных ГТД и перенос передовых технологий в наземные двигатели.

1.3. Области применения наземных ГТД

1.3.1. Механический привод промышленного оборудования

Наиболее массовое применение ГТД механического привода находят в газовой промышленности. Они используются для привода нагнетателей природного газа в составе ГПА на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 1.4).

Рис. 1.4. Применение ГТД для прямого привода нагнетателя природного газа:

1 — ГТД; 2 — трансмиссия; 3 — нагнетатель

ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт .

Основная особенность перечисленного при водимого оборудования - зависимость потребляемой мощности N от частоты вращения n (обычно близкая к кубической: N ~ n 3 ), температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменными частотой вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной. Различные схемы наземных ГТД будут рассмотрены ниже.

1.3.2. Привод электрогенераторов

ГТД для привода электрогенераторов рис. 1.5 используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих «чистую» электроэнергию, а также в составе когенерационных установок производящих совместно электрическую и тепловую энергию.

Рис. 1.5. Применение ГТД для привода генератора (через редуктор):

1 - ГТД; 2 - трансмиссия; 3 - редуктор; 4 – генератор.

Современные ГТЭС простого цикла, имеющие относительно умеренный электрический КПД η эл =25...40 %, в основном используются в пиковом режиме эксплуатации - для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуется высокой цикличностью (большим количеством циклов «пуск - нагружение – работа под нагрузкой - останов»). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме.

Электростанции с ПГУ используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов «пуск - останов» для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на ГТД большой мощности (N >150 МВт ), достигают КПД выработки электроэнергии η эл =58...60 %.

В когенерационных установках тепло выхлопных газов ГТД используется в котле-утилизаторе для производства горячей воды и (или) пара для технологических нужд или в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90 %.

Электростанции с ПГУ и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.

Основная особенность ГТД для привода электрогенераторов - постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального), а также и высокие требования к точности поддержания частоты вращения, от которой зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике. ГТД большой мощности (N >60 МВт ), работающие, как правило, в базовом режиме в составе мощных электростанции, выполняются исключительно по одновальной схеме.

В энергетике используется весь мощностной ряд ГТД от нескольких десятков кВт до 350 МВт .

1.3.3. Основные типы наземных ГТД

Наземные ГТД различного назначения и класса мощности можно разделить на три основных технологических типа:

Стационарные ГТД;

ГТД, конвертированные из авиадвигателей (авиапроизводные);

Микротурбины.

1.3. 3 .1. Стационарные ГТД

Двигатели этого типа разрабатываются и производятся на предприятиях энергомашиностроительного комплекса согласно требованиям, предъявляемым к энергетическому оборудованию:

Высокий ресурс (не менее 100 000 час) и срок службы (не менее 25 лет);

Высокая надежность;

Ремонтопригодность в условиях эксплуатации;

Умеренная стоимость применяемых конструкционных материалов и ГСМ для снижения стоимости производства и эксплуатации;

Отсутствие жестких габаритно-массовых ограничений, существенных для авиационных ГТД.

Перечисленные требования сформировали облик стационарных ГТД, для которых характерны следующие особенности:

Максимально простая конструкция;

Использование недорогих материалов с относительно низкими характеристиками;

Массивные корпуса, как правило, с горизонтальным разъемом для возможности выемки и ремонта ротора ГТД в условиях эксплуатации;

Конструкция камеры сгорания, обеспечивающая возможность ремонта и замены жаровых труб в условиях эксплуатации;

Использование подшипников скольжения.

Типичный стационарный ГТД показан на рис. 1.6.

Рис. 1. 6 . Стационарный ГТД (модель M 501 F фирмы Mitsubishi )

мощностью 150 МВт.

В настоящее время ГТД стационарного типа используются во всех областях применения наземных ГТД в широком диапазоне мощности от 1 МВт до 350 МВт .

На начальных этапах развития в стационарных ГТД применялись умеренные параметры цикла. Это объяснялось некоторым технологическим отставанием от авиационных двигателей из-за отсутствия мощной государственной финансовой поддержки, которой пользовалась авиадвигателестроительная отрасль во всех странах-производителях авиадвигателей. С конца 1980-х г.г. началось широкое внедрение авиационных технологий при проектировании новых моделей ГТД и модернизации действующих.

К настоящему времени мощные стационарные ГТД по уровню термодинамического и технологического совершенства вплотную приблизились к авиационным двигателям при сохранении высокого ресурса и срока службы.

1.3.3.2. Наземные ГТД, конвертированные из авиадвигателей

ГТД данного типа разрабатываются на базе авиационных прототипов на предприятиях авиа-двигателестроительного комплекса с использованием авиационных технологий. Промышленные ГТД, конвертированные из авиадвигателей, начали разрабатываться вначале 1960- x г.г., когда ресурс гражданских авиационных ГТД достиг приемлемой величины (2500...4000ч.).

Первые промышленные установки с авиаприводом появились в энергетике в качестве пиковых или резервных агрегатов. Дальнейшему быстрому внедрению авиапроизводных ГТД в промышленность и транспорт способствовали:

Более быстрый прогресс вавиадвигателестроении по параметрам цикла и повышению надежности, чем в стационарном газотурбостроении;

Высокое качество изготовления авиационных ГТД и возможность организации их централизованного ремонта;

Возможность использования авиадвигателей, отработавших летный ресурс, с необходимым ремонтом для эксплуатации на земле;

Преимущества авиационных ГТД - малая масса и габариты, более быстрый пуск и приемистость, меньшая потребная мощность пусковых устройств, меньшие потребные капитальные затраты при строительстве объектов применения.

При конвертации базового авиационного двигателя в наземный ГТД в случае необходимости заменяются материалы некоторых деталей холодной и горячей частей, наиболее подверженных коррозии. Так, например, магниевые сплавы заменяются на алюминиевые или стальные, в горячей части применяются более жаростойкие сплавы с повышенным содержанием хрома. Камера сгорания и система топливопитания модифицируются для работы на газообразном топливе или под многотопливный вариант. Дорабатываются узлы, системы двигателя (запуска, автоматического управления (САУ), противопожарная, маслосистема и др.) и обвязка для обеспечения работы в наземных условиях. При необходимости усиливаются некоторые статорные и роторные детали.

Объем конструктивных доработок базового авиадвигателя в наземную модификацию в значительной степени определяется типом авиационного ГТД.

Сравнение конвертированного ГТД и ГТД стационарного типа одного класса мощности показано на рис. 1.7.

Авиационные ТВД и вертолетные ГТД функционально и конструктивно более других авиадвигателей приспособлены для работы в качестве наземных ГТД. Они фактически не требуют модификации турбокомпрессорной части (кроме камеры сгорания).

В 1970-е годы был разработан наземный ГТД HK-12CT на базе одновального авиационного ТВД HK-12, который эксплуатировался на самолетах ТУ-95, ТУ-114 и АН-22. Конвертированный двигатель HK-12CT мощностью 6,3 МВт был выполнен со свободной CT и работает в составе многих ГПА и по сей день.

В настоящее время конвертированные авиационные ГТД различных производителей широко используются в энергетике, промышленности, в морских условиях и на транспорте.

Рис. 1.7. Сравнение типичных конструкций ГТД, конвертированного из авиадвигателя и ГТД стационарного типа одного класса мощности 25 МВт :

1 — тонкие корпуса; 2 — подшипники качения; 3 — выносные КС;

4 — массивные корпуса; 5 — подшипники скольжения; 6 — горизонтальный разъем

Мощностной ряд - от нескольких сотен киловатт до 50 МВт .

Данный тип ГТД характеризуется наиболее высоким эффективным КПД при работе в простом цикле, что обусловлено высокими параметрами и эффективностью узлов базовых авиадвигателей.

1.3.3.3. Микротурбины

В 1990-е годы за рубежом начали интенсивно разрабатываться энергетические ГТД сверхмалой мощности (от 30 до 200 кВт), названные микротурбинами.

Примечание: необходимо иметь ввиду, что в зарубежной практике терминами «турбина», «газовая турбина» обозначается как отделъный узел турбины, так и ГТД в целом).

Особенности микротурбин обусловлены их исключительно малой размерностью и областью применения. Микротурбины используются в малой энергетике в составе компактных когенерационных установок (ГТУ-ТЭЦ) как автономные источники электрической и тепловой энергии. Микротурбины имеют максимально простую конструкцию - одновальная схема и минимальное количество деталей рис.1.8.

Рис. 1.7. Микротурбина (модель ТА-60 фирмы Elliot Energy Systems мощностью 60 кВт )

Используются одноступенчатый центробежный компрессор и одноступенчатая центростремительная турбина, выполненные в виде моноколес. Частота вращения ротора из-за малой размерности достигает 40000...120 000 об / мин , поэтому применяются керамические и газостатические подшипники. Камера сгорания выполняется многотопливной и может работать на газообразном и жидком топливе.

Конструктивно ГТД максимально интегрируется в энергетическую установку: ротор ГТД объединяется на одном валу с ротором высокочастотного электрического генератора.

КПД микротурбин в простом цикле составляет 14...18 %. Для повышения эффективности часто используются регенераторы тепла выхлопных газов. КПД микротурбины в регенеративном цикле достигает 28...32 %.

Относительно низкая экономичность микротурбин объясняется малой размерностью и невысокими параметрами цикла, которые применяются в данном типе ГТД для упрощения и удешевления установок. Поскольку микротурбины работают в составе когенерационных установок (ГТУ-ТЭЦ), низкая экономичность ГТД компенсируется повышенной тепловой мощностью, вырабатываемой мини «ГТУ-ТЭЦ» за счет тепла выхлопных газов.

Коэффициент использования тепла топлива в этих установках достигает 80 %.

1.4. Основные мировые производители ГТД

General Electric, США . Компания General Electric (GE ) - крупнейший мировой производитель авиационных, наземных и морских ГТД. Отделение компании General Electric Aircraft Engines (GE AE) в настоящее время занимается разработкой и производством авиационных ГТД различных типов - ТРДД, ТРДДФ, ТВД и вертолетных ГТД.

Pratt & Whitney, США . ФирмаРгай & Whitney (PW) входит в состав компании United Technologies Corporations (UTC). В настоящее время PW занимается разработкой и производством авиационных ТРДД средней и большой тяги.

Pratt & Whitney Canada , (Канада). Фирма Pratt & Whitney Canada (PWC) также входит в состав компании UTC в группу PW. PWC занимается разработкой и производством малоразмерных ТРДД, ТВД и вертолетных ГТД.

Rolls-Royce (Великобритания) . Компания Rolls-Royce в настоящее время разрабатывает и производит широкий спектр ГТД авиационного, наземного и морского применения.

Honeywell (США) . Компания Honeywell занимается разработкой и производством авиационных ГТД - ТРДД и ТРДДФ в малом классе тяги, ТВД и вертолетных ГТД.

Snecma (Франция). Компания занимается разработкой и производством авиационных ГТД - военных ТРДДФ и гражданских ТРДД совместно с компанией GE. Совместно с фирмой Rolls-Royce разрабатывала и производила ТРДФ «Олимп».

Turbomeca (Франция). Фирма Turbomeca в основном разрабатывает и выпускает ТВД и вертолетные ГТД малой и средней мощности.

Siemens (Германия). Профилем этой крупной фирмы являются стационарные наземные ГТД для энергетического и механического привода и морского применения в широком диапазоне мощности.

Alstom (Франция, Великобритания). Компания Alstom разрабатывает и производит стационарные одновальные энергетические ГТД малой мощности.

Solar (США). Фирма Solar входит в состав компании Caterpillar и занимается разработкой и производством стационарных ГТД малой мощности для энергетического и механического привода и морского применения.

ОАО «Авиадвигатель» (г. Пермь) . Разрабатывает, изготавливает и сертифицирует авиационные ГТД - гражданские ТРДД для магистральных самолетов, военные ТРДДФ, вертолетные ГТД, а также авиапроизводные наземные промышленные ГТД для механического и энергетического привода.

ГУНПП «Завод имени В.Я. Климова» (г. Санкт-Петербург) . Государственное унитарное научно-производственное предприятие «Завод им. В.Я. Климова» в последние годы специализируется на разработке и производстве авиационных ГТД. Номенклатура разработок широка - военные ТРДДФ, самолетные ТВД и вертолетные ГТД; танковые ГТД, а также конвертированные промышленные ГТД.

ОАО «ЛМЗ» (г. Санкт-Петербург). ОАО «Ленинградский Металлический завод» разрабатывает и производит стационарные энергетические ГТД.

ФГУП «Мотор» (г. Уфа). Федеральное государственное унитарное предприятие «Научно-производственное предприятие "Мотор"» занимается разработкой военных ТРД и ТРДФ для истребителей и штурмовиков.

«Омское МКБ» (г. Омск). АО «Омское моторостроительное конструкторское бюро» занимается разработкой малоразмерных ГТД и вспомогательных СУ.

ОАО «НПО "Сатурн"» (г.Рыбинск) . ОАО «Научно-производственное объединение "Сатурн"» в последние годы разрабатывает и производит военные ТРДДФ, ТВД, вертолетные ГТД, конвертированные наземные ГТД. Совместно с НПО «Машпроект» (Украина) участвует в программе энергетического одновального ГТД мощностью 110 МВт.

ОАО «СНТК им. Н.Д.Кузнецова». ОАО «Самарский научно-технический комплекс им. Н.Д. Кузнецова» разрабатывает и выпускает авиационные ГТД (ТВД, ТРДД, ТРДДФ) и наземные ГТД, конвертированные из авиадвигателей.

AMHTK «Союз» (г. Москва). ОАО «Авиамоторный научно-технический комплекс "Союз"» разрабатывает и изготавливает авиационные ГТД - ТРД, ТРДФ, подъемно-маршевые ТРДДФ.

Тушинское МКБ «Союз» (г. Москва) . Государственное предприятие «Тушинское машиностроительное конструкторское бюро "Союз"» занимается доводкой и модернизацией военных ТРДФ.

НПП «Машпроект» (Украина, г. Николаев) . Научно-производственное предприятие «Зоря-Машпроект» (Украина, г. Николаев) разрабатывает и производит ГТД для морских СУ, а также наземные ГТД для энергетического и механического привода. Наземные двигатели являются модификациями моделей морского применения. Класс мощности ГТД: 2...30 МВт . C 1990 г.г. НПП «Зоря-Машпроект» разрабатывает также стационарный одновальный энергетический двигатель UGT-110 мощностью 110 МВт.

ГП «ЗМКБ "Прогресс" им. А.Г. Ивченко» (Украина, г. Запорожье). Государственное предприятие «Запорожское машиностроительное конструкторское бюро «Прогресс» имени академика А.Г. Ивченко» специализируется на разработке, изготовлении опытных образцов и сертификации авиационных ГТД - ТРДД в диапазоне тяги 17...230 кН , самолетных ТВД и вертолетных ГТД мощностью 1000...10000 кВт , а также промышленных наземных ГТД мощностью от 2,5 до 10000 кВт .

Двигатели разработки «ЗМКБ "Прогресс" серийно выпускаются в ОАО «Мотор Сич» (Украина, г. Запорожье) . Наиболее массовые серийные авиационные двигатели и перспективные проекты:

ТВД и вертолетные ГТД - АИ-20, АИ-24, Д-27;

ТРДД - АИ-25, ДВ-2, Д-36, Д-18Т, Д-436Т1/Т2/ЛП.

Наземные ГТД:

Д-336-1/2, Д-336-2-8, Д-336-1/2-10.

Другие похожие работы, которые могут вас заинтересовать.вшм>

8415. Общие сведения о ссылках 20.99 KB
Язык C предлагает альтернативу для более безопасного доступа к переменным через указатели.Объявив ссылочную переменную, можно создать объект, который, как указатель, ссылается на другое значение, но, в отличие от указателя, постоянно привязан к этому значению. Таким образом, ссылка на значение всегда ссылается на это значение.
12466. Общие сведения о гидропередачах 48.9 KB
Поэтому в дальнейшем для краткости изложения слово “статические†как правило будет опускаться. При этом усилие F1 необходимое для перемещения поршней бесконечно мало. Для удовлетворения понятию “статическая гидропередача†должно быть выполнено условие геометрического отделения полости нагнетания от полости всасывания.
17665. Общие сведения из метрологии 31.74 KB
Современное состояние измерений в телекоммуникациях Процесс совершенствования измерительных технологий подчиняется общей тенденции усложнения высоких технологий в процессе их развития. Основными тенденциями в развитии современной измерительной техники являются: расширение пределов измеряемых величин и повышение точности измерений; разработка новых методов измерений и приборов с использованием новейших принципов действия; внедрение автоматизированных информационно-измерительных систем характеризуемых высокой точностью быстродействием...
14527. Общие сведения о методах прогнозирования 21.48 KB
Общие сведения о методах прогнозирования ОФП в помещении Общие понятия и сведения об опасных факторах пожара. Методы прогнозирования ОПФ Общие понятия и сведения об опасных факторах пожара Разработка экономически оптимальных и эффективных противопожарных мероприятий основана на научнообоснованном прогнозе динамики ОФП. Современные методы прогнозирования пожара позволяют воспроизвести восстановить картину развития реального пожара. Это необходимо при криминалистической или пожарнотехнической экспертизе пожара.
7103. ОБЩИЕ СВЕДЕНИЯ И ПОНЯТИЯ О КОТЕЛЬНЫХ УСТАНОВКАХ 36.21 KB
В результате этого в паровых котлах вода превращается в пар а в водогрейных котлах нагревается до требуемой температуры. Тягодутьевое устройство состоит из дутьевых вентиляторов системы газовоздуховодов дымососов и дымовой трубы с помощью которых обеспечиваются подача необходимого количества воздуха в топку и движение продуктов сгорания по газоходам котла а также удаление их в атмосферу. представлена схема котельной установки с паровыми котлами. Установка состоит из парового котла который имеет два барабана верхний и нижний.
6149. Общие сведения о промышленных предприятиях РФ и региона 29.44 KB
В частности угольные производства горнорудные производства химические производства нефтедобывающие производства газодобывающие производства геологоразведочные предприятия объекты эксплуатирующие магистральные газопроводы предприятия газоснабжения металлургические производства производства хлебопродуктов объекты котлонадзора объекты эксплуатирующие стационарные грузоподъемные механизмы и сооружения предприятия занятые перевозкой опасных грузов и другие. Классификация объектов экономики промышленных предприятий В...
1591. ОБЩИЕ СВЕДЕНИЯ О ГЕОГРАФИЧЕСКИХ ИНФОРМАЦИОННЫХ СИСТЕМАХ 8.42 KB
Географическая информационная система или геоинформационная система (ГИС) - это информационная система, обеспечивающая сбор, хранение, обработку, анализ и отображение пространственных данных и связанных с ними непространственных, а также получение на их основе информации и знаний о географическом пространстве.
167. Общие сведения по эксплуатация средств вычислительной техники 18.21 KB
Основные понятия Средства вычислительной техники СВТ – это компьютеры к которым относятся персональные компьютеры ПЭВМ сетевые рабочие станции серверы и другие виды компьютеров а также периферийные устройства компьютерная оргтехника и средства межкомпьютерной связи. Эксплуатация СВТ заключается в использовании оборудования по назначению когда ВТ должна выполнять весь комплекс возложенных на нее задач. Для эффективного использования и поддержания СВТ в работоспособном состоянии в процессе эксплуатации проводится...
10175. Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях 15.8 KB
Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях План лекции: Введение Опасные факторы пожара. Цели лекции: Учебные В результате прослушивания материала слушатели должны знать: опасные факторы пожара воздействующие на людей на конструкции и оборудование предельно допустимые значения ОФП методы прогнозирования ОФП Уметь: прогнозировать обстановку на пожаре.Кошмаров Прогнозирование опасных факторов пожара в помещении.
9440. Общие сведения о приемо-передающих устройствах систем управления средствами поражения 2.8 MB
Электрическая копия первичного сообщения ток или напряжение подлежащего передаче называется управляющим сигналом и обозначается при аналитической записи символами или. Название обусловлено тем что этот сигнал в дальнейшем управляет одним или несколькими из параметров высокочастотных колебаний в процессе модуляции. Спектры управляющих сигналов в этой связи лежат в области низких частот и эффективно излучены быть не могут.

Одну из простейших конструкций газотурбинного двигателя, для понятия его работы, можно представить как вал, на котором находится два диска с лопатками, первый диск - компрессора, второй - турбины, в промежутке между ними установлена камера сгорания.

Принцип работы газотурбинного двигателя:

Увеличение количества подаваемого топлива (добавление «газа») вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведёт к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива. Количество топливо-воздушной смеси зависит напрямую от количества воздуха, поданного в камеру сгорания. Увеличение количества ТВС (топливо-воздушной смеси) приведёт к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания и, вследствие этого, позволяет создать бо́льшую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы .

Чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток, так как длина окружности (путь, проходимый лопатками за один оборот), прямо зависит от радиуса ротора. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Вал реактивного двигателя вращается с частотой около 10000 об/мин и микротурбина - с частотой около 100000 об/мин.

Для дальнейшего развития авиационных и газотурбинных двигателей рационально применять новые разработки в области высокопрочных и жаропрочных материалов для возможности повышения температуры и давления. Применения новых типов камер сгорания, систем охлаждения, уменьшения числа и массы деталей и двигателя в целом возможно в прогрессе применение альтернативных видов топлива, изменение самого представления конструкции двигателя.

Газотурбинная установка (ГТУ) с замкнутым циклом

В ГТУ с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках . Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют двигателем внешнего сгорания. На практике ГТУ с замкнутым циклом используются редко.

Газотурбинная установка (ГТУ) с внешним сгоранием

в Избранное в Избранном из Избранного 0

Интересная винтажная статья, которая, думаю, заинтересует коллег.

ЕЕ ДОСТОИНСТВА

В прозрачной синеве неба рокочет самолет. Люди останавливаются, ладонями прикрыв от солнца глаза, ищут его между редкими островками облаков. Но найти не могут. Может быть, его скрывает облачко или он залетел так высоко, что уже невидим для невооруженного глаза? Нет, вот кто-то уже увидел его и рукой показывает соседу - совсем не в ту сторону, куда смотрят остальные. Тонкий, с отброшенными назад крыльями, похожий на стрелу, он летит так быстро, что звук его полета достигает земли из той точки, в которой уже давно нет самолета. Кажется, звук отстает от него. А самолет, словно резвясь в родной стихии, внезапно круто, почти по вертикали, взлетает вверх, переворачивается, камнем падает вниз и снова стремительно проносится по горизонтали… Это реактивный самолет.

Основным элементом воздушно-реактивного двигателя, сообщающего самолету эту исключительно высокую скорость, почти равную скорости звука, является газовая турбина. В последние 10-15 лет проникла она на самолет, и скорости искусственных птиц выросли на четыре-пять сотен километров. Лучшие поршневые двигатели не могли обеспечить серийным самолетам таких скоростей. Как же устроен этот удивительный двигатель, обеспечивший авиации такой большой шаг вперед, этот новейший двигатель - газовая турбина?

И тут внезапно оказывается, что газовая турбина отнюдь не является новейшим двигателем. Оказывается, еще в прошлом веке имелись проекты газотурбинных двигателей. Но до некоторого времени, определяемого уровнем развития техники, газовая турбина не могла соперничать с другими типами двигателей. И это несмотря на то, что газовая турбина обладает по сравнению с ними целым рядом преимуществ.

Сравним газовую турбину, например, с паровой машиной. Простота ее устройства при этом сравнении сразу же бросается в глаза. Газовая турбина не требует сложно устроенного, громоздкого парового котла, огромного конденсатора и многих других вспомогательных механизмов.

Но ведь и обычный поршневой двигатель внутреннего сгорания не имеет ни котла, ни конденсатора. В чем же преимущества газовой турбины перед поршневым двигателем, который она столь стремительно вытеснила со скоростных самолетов?

В том, что газотурбинный двигатель - чрезвычайно легкий двигатель. Его вес на единицу мощности значительно ниже, чем у двигателей других типов.

Кроме того, она не имеет поступательно-движущихся частей - поршней, шатунов и т. д., ограничивающих число оборотов двигателя. Это преимущество, которое не кажется таким уж важным для людей, не особенно близких технике, нередко оказывается решающим для инженера.

Газовая турбина имеет еще одно подавляющее преимущество перед другими двигателями внутреннего сгорания. Она может работать на твердом топливе. Причем коэффициент полезного действия ее будет не меньше, а больше, чем у лучшего поршневого двигателя внутреннего сгорания, работающего на дорогом жидком топливе.

Какой же коэффициент полезного действия может обеспечить газовая турбина?

Оказывается, уже простейшая газотурбинная установка, которая сможет работать на газе с температурой перед турбиной в 1250-1300°С, будет иметь коэффициент полезного действия около 40-45%. Если же усложнить установку, применить регенераторы (в них используется тепло отработанного газа для подогрева воздуха), применить промежуточное охлаждение и многоступенчатое сгорание, можно получить коэффициент полезного действия газотурбинной установки порядка 55-60%. Эти цифры показывают, что по экономичности газовая турбина намного может превзойти все существующие типы двигателей. Поэтому победу газовой турбины в авиации надо рассматривать только как первую победу этого двигателя, за которой последуют другие: в железнодорожном транспорте - над паровой машиной, в стационарной энергетике - над паровой турбиной. Газовую турбину следует считать основным двигателем ближайшего будущего.

ЕЕ НЕДОСТАТКИ

Принципиальное устройство авиационной газовой турбины сегодняшнего дня не сложно (см. схему ниже). На одном валу с газовой турбиной размещается компрессор, который сжимает воздух и направляет его в камеры сгорания. Отсюда газ поступает на лопатки турбины, где часть его энергии преобразуется в механическую работу, необходимую для вращения компрессора и вспомогательных устройств, в первую очередь насоса для непрерывной подачи топлива в камеры сгорания. Другая часть энергии газа преобразуется уже в реактивном сопле, создавая реактивную тягу. Иногда делают турбины, которые вырабатывают большие мощности, чем требуется на привод компрессора и на привод вспомогательных устройств; избыточная часть этой энергии передается через редуктор на винт. Бывают авиационные газотурбинные двигатели, снабженные и винтом и реактивным соплом.

Стационарная газовая турбина принципиально не отличается от авиационной, только вместо воздушного винта к ее валу присоединяется ротор электрогенератора и газы горения не выбрасываются в реактивное сопло, а до наивозможного предела отдают заключенную в них энергию лопаткам турбины. Кроме того, стационарная газовая турбина, не связанная жесткими требованиями габаритов, веса, имеет целый ряд дополнительных устройств, обеспечивающих повышение ее экономичности, уменьшение потерь.

Газовая турбина - машина высоких параметров. Мы уже называли желательную температуру газов перед лопатками ее рабочего колеса - 1250-1300°. Это температура плавления стали. Со скоростью в несколько сотен метров в секунду движется газ, нагретый до такой температуры в соплах и лопастях турбины. Свыше тысячи оборотов в минуту делает ее ротор. Газовая турбина - это преднамеренно организованный поток раскаленного газа. Пути огненных потоков, движущихся в соплах и между лопатками турбины, точно предуказаны и рассчитаны конструкторами.

Газовая турбина - машина высокой точности. Подшипники вала, делающего тысячи оборотов в минуту, должны быть выполнены по самому высокому классу точности. Ни малейшей неуравновешенности не может быть допущено в роторе, вращающемся с этой скоростью, - иначе биения разнесут машину. Исключительно высокими должны быть требования к металлу лопаток - центробежные силы напрягают его до предела.

Эти особенности газовой турбины отчасти и затормозили внедрение ее, несмотря на все ее высокие достоинства. Действительно, какими жаропрочными и жаростойкими должны быть материалы, чтобы выдерживать в течение длительного времени напряженнейшую работу при температуре плавления стали? Современная техника не знает таких материалов.

Повышение температуры за счет достижений металлургии идет очень медленно. За последние 10-12 лет они обеспечили повышение температуры на 100-150°, то есть по 10-12° в год. Таким образом, сегодня наши стационарные газовые турбины могли бы работать (если бы не было других путей борьбы с высокой температурой) всего при температуре около 700°. Высокая же экономичность стационарных газовых турбин может быть обеспечена только при более высокой температуре рабочих газов. Если металлурги будут повышать жаропрочность материалов теми же темпами (что вообще-то сомнительно), только через пятьдесят лет они обеспечат работу стационарных газовых турбин.

Инженеры сегодня идут по другому пути. Необходимо охлаждать, говорят они, элементы газовой турбины, омываемые горячими газами. В первую очередь это относится к сопловым аппаратам и лопаткам рабочего колеса газовой турбины. И для этой цели предложен целый ряд разнообразнейших решений.

Так, предлагается сделать лопатки полыми и охлаждать их изнутри либо холодным воздухом, либо жидкостью. Есть и другое предложение - обдувать поверхность лопатки холодным воздухом, создавая вокруг нее защитную холодную пленку, как бы одевая лопатку в рубашку из холодного воздуха. Можно, наконец, делать лопатку из пористого материала и через эти поры изнутри подавать охлаждающую жидкость, чтобы лопатка как бы «потела». Но все эти предложения очень сложны при непосредственном конструктивном решении.

Есть и еще одна нерешенная техническая задача в конструировании газовых турбин. Ведь одно из основных преимуществ газовой Турбины в том, что она может работать на твердом топливе. Наиболее целесообразно при этом сжигать распыленное твердое топливо прямо в камере сгорания турбины. Но оказывается, что мы не умеем при этом достаточно эффективно отделять от газов горения твердые частички золы и шлака. Эти частички размерами более 10-15 микрон вместе с потоком раскаленных газов попадают на лопатки турбины и царапают, разрушают их поверхность. Радикальная очистка газов горения от частиц золы и шлака или сжигание распыленного топлива так, чтобы образовались твердые частички только меньше 10 микрон, - вот еще одна задача, которая должна быть решена для того, чтобы газовая турбина «сошла с небес на землю».

В АВИАЦИИ

А как же в авиации? Почему высоко в небе к. п. д. газовой турбины при одинаковых температурах газов больше, чем на земле? Потому что основным критерием для экономичности ее работы является вообще-то не температура газов горения, а отношение этой температуры к температуре наружного воздуха. А на высотах, освоенных нашей современной авиацией, эти температуры всегда сравнительно низкие.

Благодаря этому в авиации газовая турбина и стала в настоящее время основным типом двигателя. Сейчас скоростные самолеты отказались от поршневого мотора. На самолетах дальнего действия используется газовая турбина в виде воздушно-реактивного газотурбинного или турбовинтового двигателя. В авиации с особой силой сказались преимущества газовой турбины перед другими двигателями в отношении габаритов и веса.

А преимущества эти, выраженные точным языком цифр, примерно таковы: поршневой двигатель у земли имеет вес 0,4-0,5 кг на 1 л.с., газотурбинный - 0,08-0,1 кг на 1 л.с.. В высотных же условиях, скажем на высоте 10 км, поршневой мотор становится уже раз в десять тяжелее газотурбинного воздушно-реактивного двигателя.

В настоящее время официальный мировой рекорд скорости, достигнутый на самолете с турбореактивным двигателем, составляет 1212 км/час. Проектируются самолеты и для скоростей, намного превышающих скорость звука (напомним, что скорость звука у земли равна приблизительно 1220 км/час).

Даже из сказанного видно, каким революционным двигателем является в авиации газовая турбина. История еще не знала случаев, чтобы за такой короткий срок (10-15 лет) новый тип двигателя полностью вытеснил в целой области техники другой, совершенный тип двигателя.

НА ЛОКОМОТИВЕ

С самого появления железных дорог и до конца прошлого столетия паровая машина - паровоз - являлась единственным типом железнодорожного двигателя. В начале нашего столетия появился новый, более экономичный и совершенный локомотив - электровоз. Приблизительно лет тридцать тому назад на железных дорогах появляются и другие новые типы локомотивов - тепловозы и паротурбовозы.

Конечно, и паровоз за время своего существования претерпел много существенных изменений. Изменялась и его конструкция, изменялись и основные параметры - скорость, вес, мощность. Постоянно улучшались и тягово-теплотехнические характеристики паровозов, чему способствовало введение повышенной температуры перегретого пара, подогрева питательной воды, подогрева воздуха, подаваемого в топку, применение пылеугольного отопления и т. д. Однако экономичность паровозов до сих пор остается очень низкой и достигает всего 6-8%.

Известно, что железнодорожный транспорт, главным образом паровозы, расходует около 30-35°/о всего добываемого в стране угля. Повышение экономичности паровозов всего на несколько процентов означало бы гигантскую экономию, исчисляемую десятками миллионов тонн угля, добытого из-под земли тяжелым трудом шахтеров.

Низкая экономичность является главным и самым существенным недостатком паровоза, но не единственным. Как известно, в качестве двигателя на паровозе применяется паровая машина, одним из основных узлов которой является шатунно-кривошипный механизм. Этот механизм является источником вредных и опасных сил, действующих на железнодорожный путь, что резко ограничивает мощность паровозов.

Следует отметить также, что паровая машина плохо приспособлена для работы с паром высоких параметров. Ведь смазка цилиндра паровой машины обычно осуществляется вбрызгом масла в свежий пар, а масло имеет сравнительно невысокую температурную стойкость.

Что же можно получить, если в качестве локомотивного двигателя применить газовую турбину?

Как тяговый двигатель, газовая турбина имеет целый ряд преимуществ перед поршневыми машинами - паровой и внутреннего сгорания. Газовая турбина не требует водопитания и водоохлаждения, расходует совершенно незначительное количество смазки. Газовая турбина с успехом работает на низкосортном жидком топливе и может работать на твердом топливе - каменном угле. Твердое топливо в газовой турбине можно сжигать, во-первых, в виде газа после его предварительной газификации в так называемых газогенераторах. Можно твердое топливо сжигать в виде пыли и непосредственно в камере горения.

Лишь одно освоение сжигания твердого топлива в газовых турбинах без существенного повышения температуры газа и даже без устройства теплообменников даст возможность построить газотурбовоз с эксплуатационной экономичностью порядка 13-15% вместо к. п. д. у лучших паровозов 6-8%.

Мы получим огромный экономический эффект: во-первых, газотурбовоз сможет использовать любое топливо, в том числе и мелочь (на мелочи обычный паровоз работает значительно хуже, так как унос в трубу в этом случае может достигать 30-40%), во-вторых, и самое главное, расход топлива сократится в 2-2,5 раза, а это значит, что из 30-35% от всей добычи угля в Союзе, который расходуется на паровозы, освободится 15-18%. Как видно из приведенных цифр, замена паровозов газотурбовозами даст колоссальный экономический эффект.

НА ЭЛЕКТРОСТАНЦИЯХ

Крупные районные тепловые электростанции являются вторым важнейшим потребителем угля. Они расходуют примерно 18-20% от всего количества угля, добываемого в нашей стране. На современных районных электростанциях в качестве двигателя работают только паровые турбины, мощность которых в одном агрегате достигает 150 тыс. кВт.

В газотурбинной стационарной установке, применив все возможные методы повышения экономичности ее работы, можно было бы получить коэффициент полезного действия порядка 55-60%, то есть в 1,5-1,6 раза выше, чем у лучших паротурбинных установок, так что с точки зрения экономичности мы здесь опять имеем превосходство газовой турбины.

Много сомнений вызывает возможность создания газовых турбин крупных мощностей порядка 100-200 тыс. кВт, тем более, что в настоящее время самая мощная газовая турбина имеет мощность лишь в 27 тыс. кВт. Основное затруднение при создании турбины крупной мощности возникает при конструировании последней ступени турбины.

Собственно газовая турбина бывает в газотурбинных установках как одноступенчатой (сопловой аппарат и один диск с рабочими лопатками), так и многоступенчатой - как бы несколько последовательно соединенных отдельных ступеней. По ходу течения газа в турбине от первой ступени к последней размеры дисков и длины рабочих лопаток из-за роста удельного объема газа увеличиваются и достигают своих наибольших значений на последней ступени. Однако по условиям прочности длины лопаток, которые должны выдерживать напряжения от центробежных сил, не могут превосходить совершенно определенных величин для заданного числа оборотов турбины и заданного материала лопаток. Значит, при проектировании последней ступени
турбины размеры ее не должны превосходить определенных предельных значений. В этом и заключается основное затруднение.

Расчеты показывают, что газовые турбины высоких и сверхвысоких мощностей (порядка 100 тыс. кВт) могут быть сконструированы только при условии резкого повышения температуры газов перед турбиной. У инженеров есть своеобразный коэффициент удельной мощности газовой турбины, исчисляемый в кВт на 1 кв. метр площади последней ступени турбины. Для установок с мощными паровыми турбинами, имеющими коэффициент полезного действия порядка 35%, он равен 16,5 тыс. кВт на кв. м. У газовых турбин с температурой газов горения в 600° он равен всего 4 тыс. на кв. м. Соответственно коэффициент полезного действия таких газотурбинных установок простейшей схемы не превышает 22%. Стоит поднять у турбины температуру тазов до 1150°, как коэффициент удельной мощности вырастает до 18 тыс. кВт на кв. м., а к. п. д. соответственно до 35%. У более совершенной же газовой турбины, работающей с температурой газов в 1300е, он вырастает уже до 42,5 тыс. на кв. м, а коэффициент полезного действия соответственно до 53,5%!

НА АВТОМОБИЛЕ

Как известно, основным двигателем всех автомобилей является двигатель внутреннего сгорания. Однако за последние пять-восемь лет появились опытные образцы как грузовых, так и легковых автомобилей с газовой турбиной. Это еще раз служит подтверждением того, что газовая турбина явится двигателем ближайшего будущего во многих областях народного хозяйства.

Какие же преимущества может дать газовая турбина в качестве автомобильного двигателя?

Первое - это отсутствие коробки передач. Газовая двухвальная турбина обладает прекрасной тяговой характеристикой, развивая максимальное усилие при трогании с места. Мы получаем, как следствие, большую приемистость автомобиля.

Автомобильная турбина работает на дешевом топливе, имеет малые габариты. Но так как автомобильная газовая турбина является еще совсем молодым типом двигателя, перед конструкторами, пытающимися создать двигатель, конкурирующий с поршневым, постоянно встает множество вопросов, требующих решения.

Крупным недостатком всех существующих автомобильных газовых турбин сравнительно с поршневыми двигателями внутреннего сгорания является их малая экономичность. Для автомобилей требуются двигатели сравнительно малой мощности, даже 25-тонный грузовик имеет двигатель мощностью приблизительно в 300 л. с., а эта мощность является очень малой для газовой турбины. Для такой мощности турбина получается очень малых размеров, в результате чего коэффициент полезного действия установки будет низким (12- 15%), к тому же он резко падает при уменьшении нагрузки.

Чтобы судить о размерах, которые может иметь газовая турбина автомобиля, приведем следующие данные: объем, занимаемый такой газовой турбиной, приблизительно в десять раз меньше объема поршневого двигателя той же мощности. Турбину приходится делать с большим числом оборотов (порядка 30-40 тыс. об/мин), а в некоторых случаях и выше (до 50 тыс. об/мин). Пока такие высокие числа оборотов осваиваются с трудом.

Таким образом, малая экономичность и конструктивные трудности, еызываемые высокими оборотами и малыми размерами газовой турбины, являются основным тормозом постановки газовой турбины на автомобиль.

Настоящий период времени является для автомобильной газовой турбины периодом рождения, но недалеко то время, когда будет создана и высокоэкономичная газотурбинная установка малой мощности. Огромные перспективы откроются для автомобильной газовой турбины, работающей на твердом топливе, так как автотранспорт является одним из наиболее емких потребителей жидкого топлива, и перевод автотранспорта на уголь даст огромный народнохозяйственный эффект.

Мы коротко познакомились с теми областями народного хозяйства, где газовая турбина как двигатель уже заняла или может занять в скором времени свое достойное место. Имеется еще целый ряд отраслей промышленности, в которых газовая турбина имеет такие преимущества по сравнению с другими двигателями, что применение ее является безусловно выгодным. Так, например, имеются все возможности широкого применения газовой турбины и на судах, где ее малые габаритные и весовые показатели имеют большое значение.

Советские ученые и инженеры уверенно работают над совершенствованием газовых турбин, устранением конструктивных трудностей, препятствующих ее широкому распространению. Эти трудности, бесспорно, будут устранены, и тогда начнется решительное внедрение газовой турбины в железнодорожном транспорте, в стационарной энергетике.

Пройдет немного времени, и газовая турбина перестанет быть двигателем будущего, а станет основным двигателем в различных отраслях народного хозяйства.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама