THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В зависимости от способа приготовления топливовоздушной (горючей) смеси различают двигатели:

Горючей смесью называют смесь паров топлива или горючего газа с воздухом в отношении, обеспечивающем сгорание ее в рабочем цилиндре двигателя. Образуется горючая смесь в двигателях в процессе смесеобразования. Она перемешивается в камере сгорания с остаточными продуктами сгорания и образует рабочую смесь.

Смесеобразование - процесс приготовления рабочей смеси. В двигателях внутреннего сгорания различают смесеобразование внешнее и внутреннее.

Внешнее смесеобразование - процесс приготовления рабочей смеси вне цилиндра двигателя - в карбюраторе (у двигателей, работающих на жидком легкоиепаряющемся топливе) или в смесителе - у двигателей, работающих на газе.

Внутреннее смесеобразование - процесс приготовления рабочей смеси внутри цилиндра. Топливо подается в камеру сгорания форсункой при помощи насоса высокого давления.

В быстроходных дизелях применяют два способа образования смеси: объемное и пленочное.

Объемным смесеобразованием называется такой способ образования горючей смеси, при котором топливо из жидкого состояния превращается в парообразное под действием вихревых потоков воздуха в камере сгорания.

Пленочный способ смесеобразования заключается в превращении топлива из жидкого состояния в парообразное в процессе перемещения тонкого слоя (пленки) топлива по поверхности камеры сгорания под действием потока воздуха. Для полного сгорания топлива при объемном смесеобразовании требуется, чтобы форсунки хорошо распыливали и равномерно распределяли топливо по объему камеры сгорания. В дизелях, работающих с пленочным смесеобразованием, топливо впрыскивается форсункой на поверхность камеры сгорания под малым углом к поверхности. Затем оно вихревыми потоками воздуха перемещается по нагретой поверхности камеры и испаряется. При таком способе смесеобразования к форсунке предъявляются менее высокие требования, чем при объемном.

Для полного сгорания топлива в двигателе требуется минимальное, так называемое теоретически необходимое, количество воздуха. Так, для сгорания 1 кг дизельного топлива требуется 0,496 кмоль воздуха, а для сгорания 1 кг бензина 0,516 кмоль воздуха. Однако вследствие несовершенства процесса смесеобразования количество воздуха, содержащегося в горючей смеси работающего двигателя, может быть больше или меньше, чем указано.

Отношение действительного количества воздуха, поступившего в цилиндр двигателя, к количеству воздуха, теоретически необходимому для полного сгорания топлива, называется коэффициентом избытка воздуха а. Он зависит от типа двигателя, конструкции, вида и качества топлива, режима и условий работы двигателя. У автомобильных двигателей, работающих на бензине, а = 0,85… 1,3. Наиболее благоприятные условия для сгорания топлива создаются при а = 0,85…0,9. Двигатель при этом развивает максимальную мощность. Наиболее экономичный режим работы - при а = 1,1…1,3. Это режим нагрузок, близких к полной.

Образование рабочей смеси в карбюраторных двигателях начинается в карбюраторе, продолжается во впускных трубопроводах и заканчивается в камере сжатия. В дизелях рабочая смесь образуется в камере сжатия при впрыске топлива в нее форсункой. Поэтому времени на приготовление рабочей смеси в дизелях будет меньше, чем в карбюраторных двигателях, и качество приготовления рабочей смеси хуже.

Для обеспечения полного сгорания единицы поступившего в цилиндр топлива дизелям нужно больше воздуха, чем карбюраторным двигателям. В связи с этим коэффициент избытка воздуха у дизелей колеблется на режимах полной и близкой к полной нагрузке в пределах 1,4…1,25, а на холостом ходу равен 5 и более единицам.

Если в составе рабочей смеси воздуха меньше, чем теоретически необходимо для полного сгорания содержащегося в смеси топлива, то такая смесь называется «богатой». Если а>1, т. е. в смеси воздуха больше, чем теоретически необходимо для сгорания топлива, то такая смесь называется «бедной».

Чем выше качество смесеобразования, тем ближе величина а к единице. Для каждого типа двигателя коэффициент а имеет свои значения. В процессе эксплуатации нарушается регулировка топливоподающей аппаратуры, загрязняются воздушные фильтры, а это приводит к повышению гидравлического сопротивления и снижению количества воздуха, поступающего в цилиндры. При этом рабочая смесь часто переобогащается. В результате топливо сгорает не полностью. Вместе с отработавшими газами в атмосферу выбрасываются токсичные их составляющие, такие, как окись углерода (СО), окись и двуокись азота (NO, N02). Они загрязняют окружающую среду. Наряду с этим ухудшается экономичность работы двигателя. Особенно много выделяется окиси углерода при работе бензиновых двигателей на обогащенной смеси. В небольших количествах СО выделяется при работе дизелей на холостом ходу. Это вызывается местными переобогащениями смеси вследствие неудовлетворительной работы топливной аппаратуры.

Для уменьшения загрязнения окружающей среды необходимо своевременно и высококачественно регулировать топливоподающую аппаратуру и обслуживать систему фильтрации воздуха и механизм газораспределения.

По способу воспламенения рабочей смеси различают двигатели с принудительным воспламенением и с воспламенением от сжатия.

В двигателях с принудительным воспламенением рабочая смесь воспламеняется от электрической искры, которая образуется тогда, когда поршень приближается к верхней мертвой точке (в.м.т.) в такте сжатия. К этому моменту в камере сжатия находится топливовоздушная смесь, сжатая до 0,9… 1,5 МПа и нагретая до 280…480°С.

Жидкое топливо может сгорать только в газообразном состоянии. Поэтому необходимо, чтобы карбюратор обеспечивал возможно более тонкое распыливание топлива. Чем тоньше распыливание, тем больше общая поверхность частичек топлива, тем за более короткий промежуток времени оно испаряется. При возникновении искры воспламеняется только та часть смеси, которая находится у электродов искровой свечи зажигания. В этой зоне температура достигает 10 000° С, и образовавшееся пламя распространяется со скоростью 30…50 м/с по всему объему камеры сгорания. Продолжительность процесса сгорания составляет 30…40° угла поворота коленчатого вала. Угол в градусах поворота коленчатого вала от момента образования искры в свече до в.м.т. называется углом опережения зажигания ф3. Оптимальное значение величины угла ф3 зависит от конструкции двигателя, режима работы, условий эксплуатации двигателя и качества топлива.

    СМЕСЕОБРАЗОВАНИЕ - (в двигателях внутреннего сгорания) образование горючей смеси. Внешнее смесеобразование (вне цилиндра) осуществляется карбюратором (в карбюраторных двигателях) или смесителем (в газовых двигателях), внутреннее смесеобразование форсункой… … Большой Энциклопедический словарь

    смесеобразование - я; ср. Процесс образования смесей. Ускоренное с. С. в двигателях внутреннего сгорания (перемешивание топлива с воздухом или др. окислителем для наиболее полного и быстрого сгорания топлива). * * * смесеобразование (в двигателях внутреннего… … Энциклопедический словарь

    Смесеобразование - (в двигателях внутреннего сгорания), образование горючей смеси. Внешнее смесеобразование (вне цилиндра) осуществляется карбюратором (в карбюраторных двигателях) или смесителем (в газовых двигателях), внутреннее смесеобразование форсункой… … Автомобильный словарь

    СМЕСЕОБРАЗОВАНИЕ - процесс получения рабочей (горючей) смеси в двигателях внутр. сгорания. Различают 2 осн. вида С.: внешнее и внутреннее. При внешнем С. процесс получения рабочей смеси осуществляется гл. обр. вне рабочего цилиндра двигателя. При внутреннем С.,… … Большой энциклопедический политехнический словарь

Подготовка смеси топлива с возду­хом в необходимых пропорциях, обеспе­чивающих наиболее эффективное горе­ние, называется смесеобразованием. Различают двигатели с внешним и внутренним смесеобразо­ванием.

К ДВС с внешним смесеобразовани­ем относятся карбюраторные и некото­рые газовые двигатели. В двигателях, работающих на бензине, смесь готовится в карбюраторе. Простейший карбюра­тор, принципиальная схема которого по­казана на рис. 42, состоит из поплавко­вой и смесительной камер. В поплавко­вой камере помещается латунный по­плавок 1 , укрепленный шарнирно на оси 3, и игольчатый клапан 2, которыми поддерживается постоянный уровень бензина. В смесительной камере распо­ложен диффузор 6, жиклер 4 сраспыли­телем 5 и дроссельная заслонка 7 . Жик­лер представляет собой пробку с калиб­рованным отверстием, рассчитанным на протекание определенного количества топлива.

Рис. 42. Принципиальная схема простейшего карбюратора

Когда поршень движется вниз и впускной клапан открыт, во впускном трубопроводе и смесительной камере со­здается разрежение, и под действием разности давлений в поплавковой и сме­сительной камерах из распылителя вы­текает бензин. Одновременно через сме­сительную камеру проходит поток воз­духа, скорость которого в суженной части диффузора (там, куда выходит ко­нец распылителя) достигает 50-150 м/с. Бензин мелко распыливается в струе воз­духа и, постепенно испаряясь, образует горючую смесь, которая по впускному трубопроводу поступает в цилиндр. Ка­чество горючей смеси зависит от соотно­шения количеств бензина и воздуха. Го­рючая смесь может быть нормальной (15кг воздуха на 1 кг бензина), бедной (более 17 кг/кг) и богатой (менее 13 кг/кг). Количество и качество горючей сме­си, а следовательно, мощность и число оборотов двигателя регулируются дрос­сельной заслонкой и рядом специальных приспособлений, которые предусматри­ваются в сложных многожиклерных кар­бюраторах.

К ДВС с внутренним смесеобразова­нием относятся дизельные двигатели. На процессы смесеобразования, происходя­щие непосредственно в цилиндре, отво­дится незначительное время - от 0,05 до 0,001 с; это в 20-30 раз меньше времени внешнего смесеобразования в карбюра­торных двигателях. Подача топлива в цилиндр дизеля, последующее распыливание и частичное распределение по объему камеры сгорания производятся топливоподающей аппаратурой - насосом и форсункой. Современные дизели имеют форсунки, где число сопловых от­верстий диаметром 0,25-1 мм доходит до десяти.

Бескомпрессорные дизели бывают с неразделенной и разделенной камерами сгорания. Тонкость распыливания и дальнобойность факелов в неразделен­ных камерах обеспечиваются благодаря высокому давлению впрыска топлива (60-100 МПа). В разделенных камерах сгорания происходит более качественное смесеобразование, что позволило су­щественно снизить давление впрыска топлива (8-13 МПа), а также использо­вать более дешевые сорта топлива.


В газовых двигателях газообразное топливо и воздух по соображениям безо­пасности подаются по отдельным трубо­проводам. Дальнейшее смесеобразование осуществляется или в специальном сме­сителе до их поступления в цилиндр (за­полнение цилиндра в начале хода сжа­тия производится готовой смесью), или в самом цилиндре, куда они подаются раздельно. В последнем случае вначале цилиндр заполняется воздухом и затем по ходу сжатия в него через специальный клапан подается газ под давлением 0,2- 0,35 МПа. Наибольшее распространение получили смесители второго типа. Вос­пламенение газовоздушной смеси осуще­ствляется электрической искрой или раскаленным запальным шаром - кало­ризатором.

В соответствии с различными при­нципами смесеобразования различаются и требования, которые предъявляют кар­бюраторные двигатели и дизели к при­меняемым в них жидким топливам. Для карбюраторного двигателя важно, чтобы топливо хорошо испарялось в воздухе, который имеет температуру окружающей среды. Поэтому в них применяют бензи­ны. Основной проблемой, препятствую­щей повышению степени сжатия в таких двигателях сверх уже достигнутых зна­чений, является детонация. Упрощая яв­ление, можно сказать, что это - пре­ждевременное самовоспламенение горю­чей смеси, нагретой в процессе сжатия. При этом горение принимает характер детонационной (ударной, несколько на­поминающей волну от взрыва бомбы) волны, которая резко ухудшает работу двигателя, вызывает его быстрый износ и даже поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добав­ляют в топливо антидетонаторы - ве­щества, пары которых уменьшают ско­рость реакции. Наиболее распространен­ный антидетонатор - тетраэтилсвинца Pb (C 2 H 5) 4 - сильнейший яд, действую­щий на мозг человека, поэтому при обра­щении с этилированным бензином нужно быть крайне осторожным. Соединения, содержащие свинец, выбрасываются с продуктами сгорания в атмосферу, за­грязняя и ее, и окружающую среду (с травой газонов свинец может попасть в пищу скоту, оттуда - в молоко и т. д.). Поэтому потребление этого экологически опасного антидетонатора должно быть ограничено, и в ряде городов меры в этом отношении принимаются.

Для определения склонности данного топлива к детонации устанавливают ре­жим, при котором оно (естественно, в смеси с воздухом) начинает детониро­вать в специальном двигателе со строго заданными параметрами. Затем на этом же режиме подбирают состав смеси изо -октана C 3 H 18 (труднодетонирующего топлива) с н -гептаном C 7 H 16 (легкодето­нирующим топливом), при котором тоже возникает детонация. Процентное содер­жание изооктана в этой смеси называет­ся октановым числом данного топлива и является важнейшей характеристикой топлив для карбюраторных двигателей.

Автомобильные бензины маркируют по октановому числу (АИ-93, А-76 и т.п.). Буква А обозначает, что бензин автомобильный, И - октановое число, определенное специальными испы­таниями, а цифра после букв - само ок­тановое число. Чем оно выше, тем мень­ше склонность бензина к детонации и тем выше допустимая степень сжатия, а зна­чит, и экономичность двигателя.

У авиационных двигателей степень сжатия выше, поэтому октановое число авиационных бензинов должно быть не меньше 98,6. Кроме того, авиационные бензины должны более легко испаряться (иметь низкую температуру «кипения») в связи с низкими температурами на больших высотах. В дизелях жидкое топ­ливо испаряется в процессе горения при высокой температуре, поэтому испаряе­мость для них роли не играет. Однако при рабочей температуре (температуре окружающей среды) топливо должно быть достаточно жидкотекучим, т. е. иметь достаточно низкую вязкость. От этого зависит безотказная подача топлива к насосу и качество распыления его форсункой. Поэтому для дизельного топлива важна прежде всего вязкость, а также содержание серы (это связано с экологией). В маркировке дизельного топлива ДА, ДЗ, ДЛ и ДС буква Д обоз­начает - дизельное топливо, следующая буква А - арктическая (температура окружающего воздуха, при которой при­меняется это топливо t о = -30 °С), З - зимнее (t 0 = 0 ÷ -30 °С), Л - летнее (t о > 0°С) и С - специальное, получае­мое из малосернистых нефтей (t 0 >0 o C).

Вопросы для самопроверки

1. Что называется поршневым двигателем внутреннего сгорания (ДВС)?

2. Объясните принцип работы поршневого двигателя внутреннего сгорания?

3. Принцип действия простейшего карбюратора?

Построение ВСХ.

Эффективный крутящий момент:



с предкамерные

вихревое


дизель
.
Часовой расход топлива:

5. Ускорение поршня.
,

с наддувом, без наддува

по числу цилиндров

по системе зажигания

по системе питания

Скорость поршня.

,


8 Перемещение поршня

м, а при = м



9 Наддув. , то

10. Процесс выпуска

11. система охлаждения

14 .Расчёт масляных насосов.

Процесс сгорания.

Основной процесс рабочего цикла двигателя, в течение которого теплота идет на повышение внутренней энергии рабочего тела и на совершение механической работы.

Согласно первому закону термодинамики можно записать уравнение:

Для дизелей:

Для бензиновых:

Коэффициент выражает количество долей низшей теплоты сгорания, используемой на повышение внутренней энергии и на совершение работы. Для инжекторных двигателей: , карбюраторные: , дизели: .

Коэффициент использования зависит от режима работы двигателя, от конструкции, от частоты вращения, от системы охлаждения, от способа смесеобразования.

Тепловой баланс на участке можно записать в более краткой форме:

Расчетные уравнения сгорания: -для бензиновых двигателей: T z – температура конца сгорания, при подводе тепла при изохоре (V=const), следует:

Для дизелей: при V=const и р= const:

Где - степень повышения давления.

Средняя мольная теплоемкость продуктов сгорания:

После подстановки всех известных параметров и последующих преобразований решают уравнение второго порядка:

Откуда:

Давление сгорания для бензиновых двигателей:

Степень повышения давления:

Давление сгорания для дизелей:

Степень предварительного расширения:

Процесс сжатия.

В период процесса сжатия в цилиндре двигателя повышаются температура и давление рабочего тела, что обеспечивает надежное воспламенение и эффективное сгорание топлива.

Расчет процесса сжатия сводится к определению среднего показателя политропы сжатия , параметров конца сжатия и теплоемкости рабочего тела в конце сжатия .

Для бензиновых двигателей: давление и температура в конце сжатия.

Средняя мольная теплоемкость рабочей смеси:


Классификация ДВС.

ДВС подразделяются: карбюраторные, дизельные, инжекторные.

По методу осущ. газообмена: двухтактные, четырехтактные, без наддува

По способу воспламенения: с воспламенением от сжатия, с принудительным зажиганием.

По способу смесеобразования: с внешним (карбюраторные и газовые), с внутренним (дизельные и бензиновые с впрыском топлива в цилиндр).

По роду применения: легкое, тяжелое, газообразное, смешанное.

По системе охлаждения: жидкостное, воздушное.

ДВС дизель: с наддувом, без наддува.

По расположению цилиндров: однорядные, двухрядные, V-образные, оппозитные, рядные.

Масляной радиатор, расчет.

Масляный радиатор представляет собой теплообменный аппарат для охлаждения масла, циркулирующего в системе двигателя.

Количество теплоты, отводимой водой от радиатора:

Коэффициент теплоотдачи от масла к воде, Вт\м 2 *К

Поверхность охлаждения водомасляного радиатора, м 2 ;

Средняя температура масла в радиатора,К;

Средняя температура воды в радиаторе,К.

Коэффициент теплоотдачи от масла к воде, (Вт\(м 2 *К))

α1-коэффициент теплоотдачи от масла к стенкам радиатора, Вт/м 2 *К

δ-толщина стенки радиатора,м;

λтеп-коэффициент теплопроводности стенки, Вт/(м*К).

α2-коэффициент теплоотдачи от стенок радиатора к воде, Вт/м 2 *К

Количество тепла (Дж\с), отводимого маслом от двигателя:

Средняя теплоемкость масла, кДЖ/(кг*К),

Плотность масла, кг/м 3 ,

Циркуляционный расход масла, м 3 /с

И -температура масла на входе в радиатор и на выходе из него,К.

Поверхность охлаждения масляного радиатора, омываемая водой:

Форсунка, расчет.

Форсунка служит для распыливания и равномерного распределения топлива по объему камеры сгорания дизеля и выполняются открытыми или закрытыми. В закрытых форсунках распыливающиеотверстие сообщаются с трубопроводом высокого давления только в период передачи топлива. В открытых форсунках эта связь постоянна. Расчет форсунки – опр. Диаметра сопловых отверстий.

Объем топлива (мм3/цикл), впрыскиваемого форсункой за один рабочий ход четырехтактного дизеля (цикловая подача):

Время истечения топлива (с):

Угол поворота коленчатого вала, град

Средняя скорость истечения топлива (м\с) через сопловые отверстия распылителя:

Среднее давление впрыска топлива, Па;

-среднее давление газа в цилиндре в период впрыска, Па;

Давление в конце сжатия и сгорания,

Суммарная площадь сопловых отверстий форсунки:

- коэффициент расхода топлива, 0,65-0,85

Диаметр сопловых отверстий форсунки:

12. В бензиновых двигателях нашли наибольшее распространение:

1. Смещенная (Г-образная) (рис.1);

2. Полусферическая (рис.2);

3. Полуклиновая (рис.3) камеры сгорания

В дизелях форма и размещение камеры сгорания определяют способ смесеобразования.

Применяют два вида камер сгорания: неразделенные и разделенные.

Неразделенные камеры сгорания (рис.4) образованы

Построение ВСХ.

Эффективный крутящий момент:

Эффективная мощность бензинового двигателя:


Эффективная мощность дизельного (с неразделенной камерой сгорания) двигателя:


с предкамерные

вихревое

Удельный эффективный расход топлива: бензин

дизель
.
Часовой расход топлива:

5. Ускорение поршня.
,

Двигатели внешнего и внутреннего смесеобразования.

по типу: карбюраторные, инжекторные, дизельные

по смесеобразованию: внешние, внутренние

по топливу: бензиновый, дизельный, газообразный

по системе охлаждения: воздушное, водяное

с наддувом, без наддува

по числу цилиндров

по расположению цилиндров: V,W,Х – образные

по системе зажигания

по системе питания

по конструкторским особенностям

Скорость поршня.

,


8 Перемещение поршня в зависимости от угла поворота кривошипа для двигателя с центральным кривошипно-шатунным механизмом

Для рачётов удобнее использовать выражение в котром перемещение поршня является функцией одного угла используют значение только первых двух членов, вследствии малой величины с выше второго порядка из уравнения следует что при м, а при = м

Заполняют таблицу, и строят кривую. При повороте кривошипа от в.м.т до н.м.т движение поршня происходит под влиянием перемещения шатуна вдоль оси цилиндра и отклонения его от этой оси.В следствии совпадения направлений перемещений шатуна при движении кривошипа по первой четверти окружности (0-90) поршени проходит больше половины своего пути. При прохождении второй четверти (90-180) проходит меньшее расстояние чем за первую. При граф построении указанную закономерность учитывают введением поправки Брикса

Перемещение поршня в смещнном кривошипно шатунном механизме

9 Наддув. Анализ формулы эффективной мощности двигателя, показывает, что если принять неизменными рабочий объём цилиндров и состав смеси, то величина Ne при n=const будет определяться отношением 𝝶е/α, значением 𝝶v и параметрами воздуха, поступающего в двигатель. Т.к массовый заряд воздуха Gв(кг), остающегося в цйилндрах двигателя , то из уравнений следует, что при увеличении плотности воздуха(наддува), поступившего в двигатель, эффективная мощность Ne значительно повышается.

А) наиболее распространённая схема с механическим приводом нагнетателя, от коленвала.центробежные, поршневые или роторно-шестёрёнчатые нагнетатели.

Б)объединение газовой турбины и компрессора-наиболее распространн в автомобилях и тракторах

В)комбинированный наддув-1 ступень комрессор не связан механически с двигателем, вторая ступень компрессора приводится в движение от коленвала.

Г)валу турбокомпрессора связан с коленвалом - такая компоновка позволяет при избытке мощности газовой турбины отдавать её на коленвал, а принедостатке отбирать от двигателя.

10. Процесс выпуска . За период выпуска из цилиндра двигателя удаляются отработавшие газы. Открытие выпускного клапана до прихода поршня в н.м.т, снижая полезную работу расширения (площадь b"bb’’b"), способствует качественной очистке цилиндра от продуктов сгорания и уменьшает работу, необходимую для выталкивания отработавших газов. В современных двигателях открытие Впускного клапана происходит за 40 - 80 до н.м.т (точка b’)и с этого момента начинается истечение отработавших газов с критческой скоростью 600

700 м/с. За этот период, заканчивающийся вблизи н.м.т в двигателях без наддува и несколько позже при наддуве, удаляется 60 -70% отработавших газов. При дальнейшем движении поршня к в.м.т. истечение газов происходит со скоростью 200 - 250 м/с и к концу вьшуска не превышает 60 - 100 м/с. Средняя скорость истечения газов за период выпуска на номинальном режиме находится в пределах 60 - 150 м/с.

Закрытие выпускного клапана происходит через 10- 50 После в.м.т, что повышает качество очистки цилиндра за счет эжекционного свойства потока газа, выходящего из цилиндра с большой скоростью.

Снижение токсичности при эксплуатации: 1. Повышение требований к качеству регулировки топливо подающей аппаратуры, систем и устройств смесеобразования и сгорания; 2.более широким применением газовых топлив, продукты сгорания которых мение токсичны, а также переводом бензиновых двигателей на газообразное топливо.При проектировании: 1 установка доп обор,(катализаторы, дожигатели, нейтра-лизаторы); 2 разработка принципиально новых двигателей(электрические, инерционные, аккамуляторные)

11. система охлаждения . Охлаждение двигателя применяется в целях принудительного отвода теплоты от нагретых деталей для обеспечения оптимального теплового состояния двигателя и его нормальной работы. Большая часть отводимой теплоты воспринимается системой охлаждения, меньшая - системой смазки и непосредственно окружающей средой. В зависимости от рода используемого теплоносителя в автомобильных и тракторных двигателях применяют систему жидкостного или воздушного охлаждения. В качестве жидкого охлаждающего

вещества Используют воду и некоторые другие высококипящие жидкости, а в системе воздушного охлаждения - воздух.

К преимутцествам жидкостного охлаждения следует отнести:

А) более эффективный отвод теплоты от нагретых деталей двигателя при любой тепловой нагрузке;

б) быстрый и равномерный прогрев двигателя при пуске; в) допустимость применения блочных конструкций цилиндров двигателя; г) меньшая склонность к детонации в бензиновых двигателях; д) более стабильное тепловое состояние двигателя при изменении режима его работы; е) меньшие затраты моащости на охлаждение и возможность использования тепловой энергии, отводимой в систему охлаждения.

Недостатки системы жидкостного охлаждения: а) большие затраты на обслуживание и ремонт в эксплуатации; б) пониженная надежность работы двигателя при отрицательных температурах окружающей среды и большая чувствительностьк ее изменению.

Расчет основных конструктивных элементов системы охлаждения производится исходя из количества теплоты, отводимой от двигателя в единицу времени.

При жидкостном охлаждении количество отводимой теплоты (Дж/с)

где ( - количество жидкости, циркулирующей в системе, кг/с;

4187 - теплоёмкость жидкости, Дж/(кг К); - температура выходящей из двигателя жидкости и входящей в него, К. расчёт системы сводится к определению размеров жидкосного насоса, поверхности радиатора, и подбору вентилятора.

14 .Расчёт масляных насосов. Одним из основных элементов смазочной системы является масляный насос, который служит для подачи маслакх трущимся поверхностям движущихся частей двигателя. По конструктивному исполнению масляные насосы бывают шстерёнчатые и винтовые. Шестеренчатые насосы отличаются простотой устройства, компакт-ностью, надежностью в работе и являются наиболее распространенными в автомобильных и тракторных двигателях. Расчет масляного насоса заключается в определении размеров его шестерен. Этому расчету предшествует определение циркуляционного расхода масла в системе.

Циркуляционный расход масла зависит от количества отводимой им от двигателя теплоты. В соответствии с данными теплового баланса величина ‚ (кДж/с) для современных автомобильных и тракторных двигателей составляет 1,5 - 3,0% от общего количества теплоты, введенной в двигатель с топливом: Qм= (0,015 0,030)Q0

Количество теплоты, выделяемой топливом в течение 1 с: Q0= НuGт/3б00, где Нu выражено в кДж/кг; Gт - в кг/ч.

Циркуляционньтй расход масла (м3/с) при заданной величине ‚ Vд=Qм/(рмсм ) (19.2)

Смесеобразованием называется приготовление горючей смеси для подготовки топлива к сжиганию в цилиндре ДВС. Процесс горения длится очень короткое время, например, в МОД оно составляет 0,05-0,1 секунды, в ВОД - 0,003-0,015 секунды. Для того, чтобы обеспечить полное сгорание топлива за этот короткий промежуток времени необходимо приготовить рабочую смесь, состоящую из мелко распыленного жидкого топлива (дизельные ДВС) или паров топлива (карбюраторные ДВС) перемешанных с воздухом. Для обеспечения высокого качества смеси, которое оценивается коэффициентом иэбытка воздуха (α), топливо должно быть мелко распылено и равномерно распределено по всему объёму камеры сгорания. Камера должна иметь конфигурацию, соответствующую форме и дальнобойности факела от форсунки.

Образование топливного факела характеризуется дальнобойностью, углом конуса распыливания и размером капель топлива. Для лучшего использования факел образует капельный туман в виде расходящегося конуса. Этот туман должен проникать во все части камеры сгорания, но не касаться поверхностей деталей ЦПГ. Капли топлива, попадающие на стенки цилиндровой втулки, растворяют масляную плёнку, плохо перемешиваются с воздухом и сгорают не полностью, образуя сажу и нагар. По способу смесеобразования двигатели различают на:

1). Однокамерные - струйное смесеобразование с непосредственным впрыском топлива, применяется в ДВС большой и средней мощности, имеющих различные формы головок поршней. У них маленькая поверхность теплопередачи и поэтому небольшие тепловые потери. Это даёт большую экономичность и хорошие пусковые качества.

Недостатки: высокое давление впрыска топлива (до 1200 кг/см 2), усложняющее топливную аппаратуру, жёсткость работы и повышенная шумность двигателя.

2). Предкамерное – такое смесеобразование применяется на ВОД с диаметром цилиндра D=180-200 мм. В крышке цилиндров размещена предкамера, объём которой составляет 20-40% общего объёма камеры сгорания. Предкамера соединена с основной камерой каналами, число которых может быть от 1 до 12. Часть топлива сгорает в предкамере, поэтому отпадает необходимость подачи его с большим давлением. Такие ДВС менее чувствительны к качеству топлива.

Недостатки: повышенный удельный расход топлива, трудность запуска в холодное время года, значительные тепловые потери из-за большой поверхности охлаждения, малая экономичность двигателя.

3). Вихрекамерное - применяется также на ВОД в виде сферической или цилиндрической камеры сгорания, расположенной в крышке цилиндров. Её объём составляет 50-80%. Она сообщается с основной камерой сгорания каналом большого сечения. Воздух, поступая в вихревую камеру во время такта сжатия, получает вращательное движение. Благодаря этому, впрыскивющееся под давлением 100-140кг/см 2 топливо, хорошо перемешивается с воздухом и сгорает. Вместе с горячими продуктами сгорания часть его перетекает в основную камеру, создавая вихревые потоки, где сгорает полностью.


Преимущества: снижение α, бездымный выхлоп, низкое давление впрыска, применение однодырчатых распылителей форсунок, что удешевляет изготовление топливной аппаратуры.

Недостатки: сложность конструкции цилиндровой крышки, трудность запуска холодного двигателя и необходимость применения спирали накаливания для подогрева воздуха в камере.

4). Плёночное - камера сгорания расположена в головке поршня и непосредственно соединена с надпоршневым пространством. Диаметр камеры составляет ≈ 0,3-0,5D цилиндровой втулки. Головка поршня охлаждается маслом, поэтому температура её наружной поверхности не более 200-400°C. Топливо впрыскивается под давлением ≈ 150 кг/см 2 через многодырчатую форсунку. Примерно 95% топлива попадает на внутреннюю поверхность камеры поршня в виде тончайшего слоя, остальное распыливается в объёме камеры сгорания. Вначале происходит самовоспламенение распыленного топлива, затем от горящего факела воспламеняются его пары. Интенсивное перемешивание паров топлива с воздухом происходит за счёт вихреобразования. ДВС с таким смесеобразованием являются многотопливными т.е. могут использовать легкие и тяжелые сорта топлива.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама